Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Kennedy is active.

Publication


Featured researches published by Daniel P. Kennedy.


Molecular Psychiatry | 2014

The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism

A Di Martino; C-G Yan; Qingyang Li; E Denio; Francisco Xavier Castellanos; Kaat Alaerts; John S Anderson; Michal Assaf; Susan Y. Bookheimer; Mirella Dapretto; B Deen; Sonja Delmonte; Ilan Dinstein; Birgit Ertl-Wagner; Damien A. Fair; Louise Gallagher; Daniel P. Kennedy; C L Keown; Christian Keysers; Janet E. Lainhart; Catherine Lord; Beatriz Luna; Vinod Menon; Nancy J. Minshew; Christopher S. Monk; S Mueller; R-A Müller; M B Nebel; Joel T. Nigg; Kirsten O'Hearn

Autism spectrum disorders (ASDs) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, lifelong nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. Although the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE)—a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding structural MRI and phenotypic information from 539 individuals with ASDs and 573 age-matched typical controls (TCs; 7–64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 male subjects with ASDs and 403 male age-matched TCs. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less commonly explored regions such as the thalamus. The survey of the ABIDE R-fMRI data sets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international data sets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies.


Neuron | 2007

Mapping Early Brain Development in Autism

Eric Courchesne; Karen Pierce; Cynthia M. Schumann; Elizabeth Redcay; Joseph A. Buckwalter; Daniel P. Kennedy; John T. Morgan

Although the neurobiology of autism has been studied for more than two decades, the majority of these studies have examined brain structure 10, 20, or more years after the onset of clinical symptoms. The pathological biology that causes autism remains unknown, but its signature is likely to be most evident during the first years of life when clinical symptoms are emerging. This review highlights neurobiological findings during the first years of life and emphasizes early brain overgrowth as a key factor in the pathobiology of autism. We speculate that excess neuron numbers may be one possible cause of early brain overgrowth and produce defects in neural patterning and wiring, with exuberant local and short-distance cortical interactions impeding the function of large-scale, long-distance interactions between brain regions. Because large-scale networks underlie socio-emotional and communication functions, such alterations in brain architecture could relate to the early clinical manifestations of autism. As such, autism may additionally provide unique insight into genetic and developmental processes that shape early neural wiring patterns and make possible higher-order social, emotional, and communication functions.


NeuroImage | 2008

The intrinsic functional organization of the brain is altered in autism.

Daniel P. Kennedy; Eric Courchesne

In higher functioning individuals with autism, a striking disparity exists between impaired social and emotional abilities and relatively preserved sustained attention and goal-directed cognitive abilities. As these two functional domains appear to map onto two distinct large-scale brain networks, the Task-Negative Network and the Task-Positive Network, respectively, we examined their intrinsically defined functional organization in individuals with autism. Using resting functional connectivity MRI (fcMRI), we found that, in autism, there was altered functional organization of the network involved in social and emotional processing, but no group difference in the functional organization of the network involved in sustained attention and goal-directed cognition. We suggest that these findings might serve to relate the seemingly disparate strengths and weaknesses of the autistic behavioral, perceptual, and cognitive phenotype into a tractable neurofunctional framework. These results also highlight the usefulness of resting fcMRI for studying the brain in neuropsychiatric and neurodevelopmental disorders.


Nature Neuroscience | 2009

Personal Space Regulation by the Human Amygdala

Daniel P. Kennedy; Jan Gläscher; J. Michael Tyszka; Ralph Adolphs

The amygdala plays key roles in emotion and social cognition, but how this translates to face-to-face interactions involving real people remains unknown. We found that an individual with complete amygdala lesions lacked any sense of personal space. Furthermore, healthy individuals showed amygdala activation upon close personal proximity. The amygdala may be required to trigger the strong emotional reactions normally following personal space violations, thus regulating interpersonal distance in humans.


Current Opinion in Neurology | 2004

The autistic brain: birth through adulthood.

Eric Courchesne; Elizabeth Redcay; Daniel P. Kennedy

Purpose of reviewWe discuss evidence of brain maldevelopment in the first years of life in autism and new neuroanatomical and functional evidence from later ages of development. Recent findingsHead circumference, an accurate indicator of brain size in children, was reported to jump from normal or below normal size in the first postnatal months in autistic infants to the 84th percentile by about 1 year of age; this abnormally accelerated growth was concluded by 2 years of age. Infants with extreme head (and therefore brain) growth fell into the severe end of the clinical spectrum and had more extreme neuroanatomical abnormalities. In the frontal and temporal lobes in autism, there have been reports of abnormal increases in gray and white matter at 2 to 4 years; reduced metabolic measures; deviant diffusion tensor imaging results in white matter; underdeveloped cortical minicolumns; and reduced functional activation during socio-emotional, cognitive and attention tasks. Cerebellar abnormalities included abnormal volumes, reduced number and size of Purkinje neurons in the vermis and hemispheres, molecular defects, and reduced functional activation in posterior regions. SummaryA new neurobiological phenomenon in autism has been described that precedes the onset of clinical behavioral symptoms, and is brief and age-delimited to the first two years of life. The neurobiological defects that precede, trigger, and underlie it may form part of the developmental precursors of some of the anatomical, functional, and behavioral manifestations of autism. Future studies of the first years of life may help elucidate the factors and processes that bring about the unfolding of autistic behavior.


Social Cognitive and Affective Neuroscience | 2008

Functional abnormalities of the default network during self- and other-reflection in autism

Daniel P. Kennedy; Eric Courchesne

Recent studies of autism have identified functional abnormalities of the default network during a passive resting state. Since the default network is also typically engaged during social, emotional and introspective processing, dysfunction of this network may underlie some of the difficulties individuals with autism exhibit in these broad domains. In the present experiment, we attempted to further delineate the nature of default network abnormality in autism using experimentally constrained social and introspective tasks. Thirteen autism and 12 control participants were scanned while making true/false judgments for various statements about themselves (SELF condition) or a close other person (OTHER), and pertaining to either psychological personality traits (INTERNAL) or observable characteristics and behaviors (EXTERNAL). In the ventral medial prefrontal cortex/ventral anterior cingulate cortex, activity was reduced in the autism group across all judgment conditions and also during a resting condition, suggestive of task-independent dysfunction of this region. In other default network regions, overall levels of activity were not different between groups. Furthermore, in several of these regions, we found group by condition interactions only for INTERNAL/EXTERNAL judgments, and not SELF/OTHER judgments, suggestive of task-specific dysfunction. Overall, these results provide a more detailed view of default network functionality and abnormality in autism.


Development and Psychopathology | 2005

Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism

Eric Courchesne; Elizabeth Redcay; John T. Morgan; Daniel P. Kennedy

Autistic symptoms begin in the first years of life, and recent magnetic resonance imaging studies have discovered brain growth abnormalities that precede and overlap with the onset of these symptoms. Recent postmortem studies of the autistic brain provide evidence of cellular abnormalities and processes that may underlie the recently discovered early brain overgrowth and arrest of growth that marks the first years of life in autism. Alternative origins and time tables for these cellular defects and processes are discussed. These cellular and growth abnormalities are most pronounced in frontal, cerebellar, and temporal structures that normally mediate the development of those same higher order social, emotional, speech, language, speech, attention, and cognitive functions that characterize autism. Cellular and growth pathologies are milder and perhaps nonexistent in other structures (e.g., occipital cortex), which are known to mediate functions that are often either mildly affected or entirely unaffected in autistic patients. It is argued that in autism, higher order functions largely fail to develop normally in the first place because frontal, cerebellar, and temporal cellular and growth pathologies occur prior to and during the critical period when these higher order neural systems first begin to form their circuitry. It is hypothesized that microstructural maldevelopment results in local and short distance overconnectivity in frontal cortex that is largely ineffective and in a failure of long-distance cortical-cortical coupling, and thus a reduction in frontal-posterior reciprocal connectivity. This altered circuitry impairs the essential role of frontal cortex in integrating information from diverse functional systems (emotional, sensory, autonomic, memory, etc.) and providing context-based and goal-directed feedback to lower level systems.


Cerebral Cortex | 2014

Largely Typical Patterns of Resting-State Functional Connectivity in High-Functioning Adults with Autism

J. Michael Tyszka; Daniel P. Kennedy; Lynn K. Paul; Ralph Adolphs

A leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, yet the majority of studies report effects that are either very weak, inconsistent across studies, or explain results incompletely. Here we apply multiple analytical approaches to resting-state BOLD-fMRI data at the whole-brain level. Neurotypical and high-functioning adults with autism displayed very similar patterns and strengths of resting-state connectivity. We found only limited evidence in autism for abnormal resting-state connectivity at the regional level and no evidence for altered connectivity at the whole-brain level. Regional abnormalities in functional connectivity in autism spectrum disorder were primarily in the frontal and temporal cortices. Within these regions, functional connectivity with other brain regions was almost exclusively lower in the autism group. Further examination showed that even small amounts of head motion during scanning have large effects on functional connectivity measures and must be controlled carefully. Consequently, we suggest caution in the interpretation of apparent positive findings until all possible confounding effects can be ruled out. Additionally, we do not rule out the possibility that abnormal connectivity in autism is evident at the microstructural synaptic level, which may not be reflected sensitively in hemodynamic changes measured with BOLD-fMRI.


The Journal of Neuroscience | 2011

Intact Bilateral Resting-State Networks in the Absence of the Corpus Callosum

J. Michael Tyszka; Daniel P. Kennedy; Ralph Adolphs; Lynn K. Paul

Temporal correlations between different brain regions in the resting-state BOLD signal are thought to reflect intrinsic functional brain connectivity (Biswal et al., 1995; Greicius et al., 2003; Fox et al., 2007). The functional networks identified are typically bilaterally distributed across the cerebral hemispheres, show similarity to known white matter connections (Greicius et al., 2009), and are seen even in anesthetized monkeys (Vincent et al., 2007). Yet it remains unclear how they arise. Here we tested two distinct possibilities: (1) functional networks arise largely from structural connectivity constraints, and generally require direct interactions between functionally coupled regions mediated by white-matter tracts; and (2) functional networks emerge flexibly with the development of normal cognition and behavior and can be realized in multiple structural architectures. We conducted resting-state fMRI in eight adult humans with complete agenesis of the corpus callosum (AgCC) and normal intelligence, and compared their data to those from eight healthy matched controls. We performed three main analyses: anatomical region-of-interest-based correlations to test homotopic functional connectivity, independent component analysis (ICA) to reveal functional networks with a data-driven approach, and ICA-based interhemispheric correlation analysis. Both groups showed equivalently strong homotopic BOLD correlation. Surprisingly, almost all of the group-level independent components identified in controls were observed in AgCC and were predominantly bilaterally symmetric. The results argue that a normal complement of resting-state networks and intact functional coupling between the hemispheres can emerge in the absence of the corpus callosum, favoring the second over the first possibility listed above.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Differential electrophysiological response during rest, self-referential, and non–self-referential tasks in human posteromedial cortex

Mohammad Dastjerdi; Brett L. Foster; Sharmin Nasrullah; Andreas M. Rauschecker; Robert F. Dougherty; Jennifer D. Townsend; Catie Chang; Michael D. Greicius; Vinod Menon; Daniel P. Kennedy; Josef Parvizi

The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network (DMN) remains largely unknown. Here we use intracranial recordings in the human posteromedial cortex (PMC), a core node within the DMN, during conditions of cued rest, autobiographical judgments, and arithmetic processing. We found a heterogeneous profile of PMC responses in functional, spatial, and temporal domains. Although the majority of PMC sites showed increased broad gamma band activity (30–180 Hz) during rest, some PMC sites, proximal to the retrosplenial cortex, responded selectively to autobiographical stimuli. However, no site responded to both conditions, even though they were located within the boundaries of the DMN identified with resting-state functional imaging and similarly deactivated during arithmetic processing. These findings, which provide electrophysiological evidence for heterogeneity within the core of the DMN, will have important implications for neuroimaging studies of the DMN.

Collaboration


Dive into the Daniel P. Kennedy's collaboration.

Top Co-Authors

Avatar

Ralph Adolphs

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Michael Tyszka

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lisa Byrge

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Lynn K. Paul

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Beatriz Luna

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet E. Lainhart

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge