Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet E. Lainhart is active.

Publication


Featured researches published by Janet E. Lainhart.


Molecular Psychiatry | 2014

The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism

A Di Martino; C-G Yan; Qingyang Li; E Denio; Francisco Xavier Castellanos; Kaat Alaerts; John S Anderson; Michal Assaf; Susan Y. Bookheimer; Mirella Dapretto; B Deen; Sonja Delmonte; Ilan Dinstein; Birgit Ertl-Wagner; Damien A. Fair; Louise Gallagher; Daniel P. Kennedy; C L Keown; Christian Keysers; Janet E. Lainhart; Catherine Lord; Beatriz Luna; Vinod Menon; Nancy J. Minshew; Christopher S. Monk; S Mueller; R-A Müller; M B Nebel; Joel T. Nigg; Kirsten O'Hearn

Autism spectrum disorders (ASDs) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, lifelong nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. Although the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE)—a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding structural MRI and phenotypic information from 539 individuals with ASDs and 573 age-matched typical controls (TCs; 7–64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 male subjects with ASDs and 403 male age-matched TCs. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less commonly explored regions such as the thalamus. The survey of the ABIDE R-fMRI data sets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international data sets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies.


NeuroImage | 2007

Diffusion tensor imaging of the corpus callosum in Autism.

Andrew L. Alexander; Jee Eun Lee; Mariana Lazar; Rebecca Boudos; Molly B. DuBray; Terrence R. Oakes; Judith Miller; Jeffrey K. Lu; Eun Kee Jeong; William M. McMahon; Erin D. Bigler; Janet E. Lainhart

The corpus callosum is the largest commissural white matter pathway that connects the hemispheres of the human brain. In this study, diffusion tensor imaging (DTI) was performed on subject groups with high-functioning autism and controls matched for age, handedness, IQ, and head size. DTI and volumetric measurements of the total corpus callosum and subregions (genu, body and splenium) were made and compared between groups. The results showed that there were significant differences in volume, fractional anisotropy, mean diffusivity, and radial diffusivity between groups. These group differences appeared to be driven by a subgroup of the autism group that had small corpus callosum volumes, high mean diffusivity, low anisotropy, and increased radial diffusivity. This subgroup had significantly lower performance IQ measures than either the other individuals with autism or the control subjects. Measurements of radial diffusivity also appeared to be correlated with processing speed measured during the performance IQ tests. The subgroup of autism subjects with high mean diffusivity and low fractional anisotropy appeared to cluster with the highest radial diffusivities and slowest processing speeds. These results suggest that the microstructure of the corpus callosum is affected in autism, which may be related to nonverbal cognitive performance.


Journal of the American Academy of Child and Adolescent Psychiatry | 1997

Macrocephaly in children and adults with autism

Janet E. Lainhart; Joseph Piven; Maryann Wzorek; Rebecca Landa; Susan L. Santangelo; Hilary Coon; Susan E. Folstein

OBJECTIVE To explore the frequency and onset of macrocephaly in autism and its relationship to clinical features. METHOD Head circumferences at birth, during early childhood, and at the time of examination were studied in a community-based sample of autistic children and adults. The authors investigated whether head circumference at the time of examination was associated with clinical features. RESULTS Fourteen percent of the autistic subjects had macrocephaly: 11% of males and 24% of females. In most, the macrocephaly was not present at birth; in some it became apparent in early and middle childhood as a result of increased rate of head growth. A small relationship was noted between head circumference percentile and less severe core features of autism. Neither macrocephaly nor head circumference percentile was associated with nonverbal IQ, verbal status, seizure disorder, neurological soft signs or minor physical anomalies in the autistic subjects. CONCLUSION Macrocephaly is common in autism and usually is not present at birth. Rates of head growth may be abnormal in early and middle childhood in some (37%) children with autism. Macrocephaly does not define a homogeneous subgroup of autistic individuals according to clinical features.


Cerebral Cortex | 2011

Decreased Interhemispheric Functional Connectivity in Autism

Jeffrey S. Anderson; T. Jason Druzgal; Alyson L. Froehlich; Molly B. DuBray; Nicholas Lange; Andrew L. Alexander; Tracy J. Abildskov; Jared A. Nielsen; Annahir N. Cariello; Jason R. Cooperrider; Erin D. Bigler; Janet E. Lainhart

The cortical underconnectivity theory asserts that reduced long-range functional connectivity might contribute to a neural mechanism for autism. We examined resting-state blood oxygen level-dependent interhemispheric correlation in 53 males with high-functioning autism and 39 typically developing males from late childhood through early adulthood. By constructing spatial maps of correlation between homologous voxels in each hemisphere, we found significantly reduced interhemispheric correlation specific to regions with functional relevance to autism: sensorimotor cortex, anterior insula, fusiform gyrus, superior temporal gyrus, and superior parietal lobule. Observed interhemispheric connectivity differences were better explained by diagnosis of autism than by potentially confounding neuropsychological metrics of language, IQ, or handedness. Although both corpus callosal volume and gray matter interhemispheric connectivity were significantly reduced in autism, no direct relationship was observed between them, suggesting that structural and functional metrics measure different aspects of interhemispheric connectivity. In the control but not the autism sample, there was decreasing interhemispheric correlation with subject age. Greater differences in interhemispheric correlation were seen for more lateral regions in the brain. These findings suggest that long-range connectivity abnormalities in autism are spatially heterogeneous and that transcallosal connectivity is decreased most in regions with functions associated with behavioral abnormalities in autism. Autism subjects continue to show developmental differences in interhemispheric connectivity into early adulthood.


American Journal of Medical Genetics Part A | 2006

Head circumference and height in autism : A study by the collaborative program of excellence in autism

Janet E. Lainhart; Erin D. Bigler; Maureen Bocian; Hilary Coon; Elena Dinh; Geraldine Dawson; Curtis K. Deutsch; Michelle Dunn; Annette Estes; Helen Tager-Flusberg; Susan E. Folstein; Susan Hepburn; Susan L. Hyman; William M. McMahon; Nancy J. Minshew; Jeff Munson; Kathy Osann; Sally Ozonoff; Patricia M. Rodier; Sally J. Rogers; Marian Sigman; M. Anne Spence; Christopher J. Stodgell; Fred R. Volkmar

Data from 10 sites of the NICHD/NIDCD Collaborative Programs of Excellence in Autism were combined to study the distribution of head circumference and relationship to demographic and clinical variables. Three hundred thirty‐eight probands with autism‐spectrum disorder (ASD) including 208 probands with autism were studied along with 147 parents, 149 siblings, and typically developing controls. ASDs were diagnosed, and head circumference and clinical variables measured in a standardized manner across all sites. All subjects with autism met ADI‐R, ADOS‐G, DSM‐IV, and ICD‐10 criteria. The results show the distribution of standardized head circumference in autism is normal in shape, and the mean, variance, and rate of macrocephaly but not microcephaly are increased. Head circumference tends to be large relative to height in autism. No site, gender, age, SES, verbal, or non‐verbal IQ effects were present in the autism sample. In addition to autism itself, standardized height and average parental head circumference were the most important factors predicting head circumference in individuals with autism. Mean standardized head circumference and rates of macrocephaly were similar in probands with autism and their parents. Increased head circumference was associated with a higher (more severe) ADI‐R social algorithm score. Macrocephaly is associated with delayed onset of language. Although mean head circumference and rates of macrocephaly are increased in autism, a high degree of variability is present, underscoring the complex clinical heterogeneity of the disorder. The wide distribution of head circumference in autism has major implications for genetic, neuroimaging, and other neurobiological research.


Brain | 2011

Functional connectivity magnetic resonance imaging classification of autism

Jeffrey S. Anderson; Jared A. Nielsen; Alyson L. Froehlich; Molly B. DuBray; T. Jason Druzgal; Annahir N. Cariello; Jason R. Cooperrider; Brandon A. Zielinski; Caitlin Ravichandran; P. Thomas Fletcher; Andrew L. Alexander; Erin D. Bigler; Nicholas Lange; Janet E. Lainhart

Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75% specificity for a total accuracy of 79% (P = 1.1 × 10(-7)). In subjects <20 years of age, the classifier performed at 89% accuracy (P = 5.4 × 10(-7)). In a replication dataset consisting of 21 individuals from six families with both affected and unaffected siblings, the classifier performed at 71% accuracy (91% accuracy for subjects <20 years of age). Classification scores in subjects with autism were significantly correlated with the Social Responsiveness Scale (P = 0.05), verbal IQ (P = 0.02) and the Autism Diagnostic Observation Schedule-Generics combined social and communication subscores (P = 0.05). An analysis of informative connections demonstrated that region of interest pairs with strongest correlation values were most abnormal in autism. Negatively correlated region of interest pairs showed higher correlation in autism (less anticorrelation), possibly representing weaker inhibitory connections, particularly for long connections (Euclidean distance >10 cm). Brain regions showing greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula. Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects diminishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity magnetic resonance imaging diagnostic assay for autism.


Autism Research | 2012

Diffusion Tensor Imaging in Autism Spectrum Disorder: A Review

Brittany G. Travers; Nagesh Adluru; Chad Ennis; Do P. M. Tromp; Dan Destiche; Sam Doran; Erin D. Bigler; Nicholas Lange; Janet E. Lainhart; Andrew L. Alexander

White matter tracts of the brain allow neurons and neuronal networks to communicate and function with high efficiency. The aim of this review is to briefly introduce diffusion tensor imaging methods that examine white matter tracts and then to give an overview of the studies that have investigated white matter integrity in the brains of individuals with autism spectrum disorder (ASD). From the 48 studies we reviewed, persons with ASD tended to have decreased fractional anisotropy and increased mean diffusivity in white matter tracts spanning many regions of the brain but most consistently in regions such as the corpus callosum, cingulum, and aspects of the temporal lobe. This decrease in fractional anisotropy was often accompanied by increased radial diffusivity. Additionally, the review suggests possible atypical lateralization in some white matter tracts of the brain and a possible atypical developmental trajectory of white matter microstructure in persons with ASD. Clinical implications and future research directions are discussed. Autism Res 2012, 5: 289–313.


Neuroscience Letters | 2007

Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism.

Jee Eun Lee; Erin D. Bigler; Andrew L. Alexander; Mariana Lazar; Molly B. DuBray; Moo K. Chung; Michael Johnson; Jubel Morgan; Judith Miller; William M. McMahon; Jeffrey K. Lu; Eun Kee Jeong; Janet E. Lainhart

Recent MRI studies have indicated that regions of the temporal lobe including the superior temporal gyrus (STG) and the temporal stem (TS) appear to be abnormal in autism. In this study, diffusion tensor imaging (DTI) measurements of white matter in the STG and the TS were compared in 43 autism and 34 control subjects. DTI measures of mean diffusivity, fractional anisotropy, axial diffusivity, and radial diffusivity were compared between groups. In all regions, fractional anisotropy was significantly decreased and both mean diffusivity and radial diffusivity were significantly increased in the autism group. These results suggest that white matter microstructure in autism is abnormal in these temporal lobe regions, which is consistent with theories of aberrant brain connectivity in autism.


Developmental Neuropsychology | 2007

Superior Temporal Gyrus, Language Function, and Autism

Erin D. Bigler; Sherstin Mortensen; E. Shannon Neeley; Sally Ozonoff; Lori Krasny; Michael Johnson; Jeffrey K. Lu; Sherri Provencal; William M. McMahon; Janet E. Lainhart

Deficits in language are a core feature of autism. The superior temporal gyrus (STG) is involved in auditory processing, including language, but also has been implicated as a critical structure in social cognition. It was hypothesized that subjects with autism would display different size-function relationships between the STG and intellectual-language-based abilities when compared to controls. Intellectual ability was assessed by either the Wechsler Intelligence Scale for Children–Third Edition (WISC–III) or Wechsler Adult Intelligence Scale–Third Edition (WAIS–III), where three intellectual quotients (IQ) were computed: verbal (VIQ), performance (PIQ), and full-scale (FSIQ). Language ability was assessed by the Clinical Evaluation of Language Fundamentals–Third Edition (CELF–3), also divided into three index scores: receptive, expressive, and total. Seven to 19-year-old rigorously diagnosed subjects with autism (n = 30) were compared to controls (n = 39; 13 of whom had a deficit in reading) of similar age who were matched on education, PIQ, and head circumference. STG volumes were computed based on 1.5 Tesla magnetic resonance imaging (MRI). IQ and CELF–3 performance were highly interrelated regardless of whether subjects had autism or were controls. Both IQ and CELF–3 ability were positively correlated with STG in controls, but a different pattern was observed in subjects with autism. In controls, left STG gray matter was significantly (r = .42, p ≤ .05) related to receptive language on the CELF–3; in contrast, a zero order correlation was found with autism. When plotted by age, potential differences in growth trajectories related to language development associated with STG were observed between controls and those subjects with autism. Taken together, these findings suggest a possible failure in left hemisphere lateralization of language function involving the STG in autism. Superior Temporal Gyrus, Language Function, and Autism


International Review of Psychiatry | 1999

Psychiatric problems in individuals with autism, their parents and siblings

Janet E. Lainhart

The objective of this paper is to review psychiatric problems in children and adults with autism and related disorders and their first-degree relatives, with a focus on: (1) why they present with psychiatric problems; (2) rates of psychiatric disorders; (3) clinical features important in diagnosis and differential diagnosis; (4) treatment. The data come from published reports of psychiatric problems in individuals with autism, Aspergers disorder, or Pervasive Developmental Disorder Not Otherwise Specified and their relatives and the clinical experience of the author and other experts. Children and adults with autism may present with psychiatric problems because of the core defining features of autism, cognitive impairments, medical disorders, other psychiatric symptoms and disorders, and life experiences related to having autism. The data suggest that depression, anxiety, impairing compulsive behaviours, attentional problems, hyperactivity, and sleep problems occur commonly in individuals with autism. Ti...

Collaboration


Dive into the Janet E. Lainhart's collaboration.

Top Co-Authors

Avatar

Erin D. Bigler

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Andrew L. Alexander

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brittany G. Travers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge