Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P.S. Osborn is active.

Publication


Featured researches published by Daniel P.S. Osborn.


Nature Genetics | 2011

Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome

Caroline Rooryck; Anna Diaz-Font; Daniel P.S. Osborn; Elyes Chabchoub; Victor Hernandez-Hernandez; Hanan E. Shamseldin; Joanna Kenny; A Waters; Dagan Jenkins; Ali Al Kaissi; Gabriela F Leal; Bruno Dallapiccola; Franco Carnevale; Maria Bitner-Glindzicz; Melissa Lees; Raoul C. M. Hennekam; Philip Stanier; Alan J. Burns; Hilde Peeters; Fowzan S. Alkuraya; Philip L. Beales

3MC syndrome has been proposed as a unifying term encompassing the overlapping Carnevale, Mingarelli, Malpuech and Michels syndromes. These rare autosomal recessive disorders exhibit a spectrum of developmental features, including characteristic facial dysmorphism, cleft lip and/or palate, craniosynostosis, learning disability and genital, limb and vesicorenal anomalies. Here we studied 11 families with 3MC syndrome and identified two mutated genes, COLEC11 and MASP1, both of which encode proteins in the lectin complement pathway (collectin kidney 1 (CL-K1) and MASP-1 and MASP-3, respectively). CL-K1 is highly expressed in embryonic murine craniofacial cartilage, heart, bronchi, kidney and vertebral bodies. Zebrafish morphants for either gene develop pigmentary defects and severe craniofacial abnormalities. Finally, we show that CL-K1 serves as a guidance cue for neural crest cell migration. Together, these findings demonstrate a role for complement pathway factors in fundamental developmental processes and in the etiology of 3MC syndrome.


American Journal of Human Genetics | 2010

Cranioectodermal Dysplasia, Sensenbrenner Syndrome, Is a Ciliopathy Caused by Mutations in the IFT122 Gene

Joanna Walczak-Sztulpa; Jonathan T. Eggenschwiler; Daniel P.S. Osborn; Desmond Brown; Francesco Emma; Claus Klingenberg; Raoul C. M. Hennekam; G. Torre; Masoud Garshasbi; Andreas Tzschach; Małgorzata Szczepańska; Marian Krawczyński; Jacek Zachwieja; Danuta Zwolińska; Philip L. Beales; Hans-Hilger Ropers; Anna Latos-Bielenska; Andreas W. Kuss

Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too.


Journal of Cell Biology | 2009

Basal body stability and ciliogenesis requires the conserved component Poc1

Chad G. Pearson; Daniel P.S. Osborn; Thomas H. Giddings; Philip L. Beales; Mark Winey

Poc1 shores up basal bodies to support cilia formation in Tetrahymena thermophila, zebrafish, and humans; Poc1 depletion causes phenotypes commonly seen in ciliopathies.


Development | 2009

Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations

Yaniv Hinits; Daniel P.S. Osborn; Simon M. Hughes

Myogenic regulatory factors of the Myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. However, the roles of each gene in myogenesis remain unclear, owing partly to genetic linkage at the Myf5/Mrf4 locus and to rapid morphogenetic movements in the amniote somite. In mice, Myf5 is essential for the earliest epaxial myogenesis, whereas Myod is required for timely differentiation of hypaxially derived muscle. A second major subdivision of the somite is between primaxial muscle of the somite proper and abaxial somite-derived migratory muscle precursors. Here, we use a combination of mutant and morphant analysis to ablate the function of each of the four conserved MRF genes in zebrafish, an organism that has retained a more ancestral bodyplan. We show that a fundamental distinction in somite myogenesis is into medial versus lateral compartments, which correspond to neither epaxial/hypaxial nor primaxial/abaxial subdivisions. In the medial compartment, Myf5 and/or Myod drive adaxial slow fibre and medial fast fibre differentiation. Myod-driven Myogenin activity alone is sufficient for lateral fast somitic and pectoral fin fibre formation from the lateral compartment, as well as for cranial myogenesis. Myogenin activity is a significant contributor to fast fibre differentiation. Mrf4 does not contribute to early myogenesis in zebrafish. We suggest that the differential use of duplicated MRF paralogues in this novel two-component myogenic system facilitated the diversification of vertebrates.


Developmental Biology | 2010

Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish.

Helen May-Simera; Masatake Kai; Victor Hernandez; Daniel P.S. Osborn; Masazumi Tada; Philip L. Beales

Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffers vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.


Journal of Cell Science | 2012

Heat shock induces rapid resorption of primary cilia.

N. V. Prodromou; Clare L. Thompson; Daniel P.S. Osborn; K. F. Cogger; Rachel Ashworth; Martin M. Knight; Philip L. Beales; J.P. Chapple

Summary Primary cilia are involved in important developmental and disease pathways, such as the regulation of neurogenesis and tumorigenesis. They function as sensory antennae and are essential in the regulation of key extracellular signalling systems. We have investigated the effects of cell stress on primary cilia. Exposure of mammalian cells in vitro, and zebrafish cells in vivo, to elevated temperature resulted in the rapid loss of cilia by resorption. In mammalian cells loss of cilia correlated with a reduction in hedgehog signalling. Heat-shock-dependent loss of cilia was decreased in cells where histone deacetylases (HDACs) were inhibited, suggesting resorption is mediated by the axoneme-localised tubulin deacetylase HDAC6. In thermotolerant cells the rate of ciliary resorption was reduced. This implies a role for molecular chaperones in the maintenance of primary cilia. The cytosolic chaperone Hsp90 localises to the ciliary axoneme and its inhibition resulted in cilia loss. In the cytoplasm of unstressed cells, Hsp90 is known to exist in a complex with HDAC6. Moreover, immediately after heat shock Hsp90 levels were reduced in the remaining cilia. We hypothesise that ciliary resorption serves to attenuate cilia-mediated signalling pathways in response to extracellular stress, and that this mechanism is regulated in part by HDAC6 and Hsp90.


Developmental Biology | 2011

Cdkn1c drives muscle differentiation through a positive feedback loop with Myod

Daniel P.S. Osborn; Kuoyu Li; Yaniv Hinits; Simon M. Hughes

Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57(Kip2)) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.


PLOS ONE | 2014

Loss of FTO Antagonises Wnt Signaling and Leads to Developmental Defects Associated with Ciliopathies

Daniel P.S. Osborn; Rosa Maria Roccasecca; F McMurray; Hernandez-Hernandez; Sayandip Mukherjee; Inês Barroso; Derek L. Stemple; R Cox; Philip L. Beales; S Christou-Savina

Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto−/− MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca2+ pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.


Human Genetics | 2013

Characterization of CCDC28B reveals its role in ciliogenesis and provides insight to understand its modifier effect on Bardet-Biedl syndrome.

Magdalena Cardenas-Rodriguez; Daniel P.S. Osborn; Florencia Irigoín; Martín Graña; Héctor Romero; Philip L. Beales; Jose L. Badano

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that is generally inherited in an autosomal recessive fashion. However, in some families, trans mutant alleles interact with the primary causal locus to modulate the penetrance and/or the expressivity of the phenotype. CCDC28B (MGC1203) was identified as a second site modifier of BBS encoding a protein of unknown function. Here we report the first functional characterization of this protein and show it affects ciliogenesis both in cultured cells and in vivo in zebrafish. Consistent with this biological role, our in silico analysis shows that the presence of CCDC28B homologous sequences is restricted to ciliated metazoa. Depletion of Ccdc28b in zebrafish results in defective ciliogenesis and consequently causes a number of phenotypes that are characteristic of BBS and other ciliopathy mutants including hydrocephalus, left–right axis determination defects and renal function impairment. Thus, this work reports CCDC28B as a novel protein involved in the process of ciliogenesis whilst providing functional insight into the cellular basis of its modifier effect in BBS patients.


Human Molecular Genetics | 2013

The Bardet–Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex

Magdalena Cardenas-Rodriguez; Florencia Irigoín; Daniel P.S. Osborn; Cecilia Gascue; Nicholas Katsanis; Philip L. Beales; Jose L. Badano

CCDC28B encodes a coiled coil domain-containing protein involved in ciliogenesis that was originally identified as a second site modifier of the ciliopathy Bardet-Biedl syndrome. We have previously shown that the depletion of CCDC28B leads to shortened cilia; however, the mechanism underlying how this protein controls ciliary length is unknown. Here, we show that CCDC28B interacts with SIN1, a component of the mTOR complex 2 (mTORC2), and that this interaction is important both in the context of mTOR signaling and in a hitherto unknown, mTORC-independent role of SIN1 in cilia biology. We show that CCDC28B is a positive regulator of mTORC2, participating in its assembly/stability and modulating its activity, while not affecting mTORC1 function. Further, we show that Ccdc28b regulates cilia length in vivo, at least in part, through its interaction with Sin1. Importantly, depletion of Rictor, another core component of mTORC2, does not result in shortened cilia. Taken together, our findings implicate CCDC28B in the regulation of mTORC2, and uncover a novel function of SIN1 regulating cilia length that is likely independent of mTOR signaling.

Collaboration


Dive into the Daniel P.S. Osborn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clare L. Thompson

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

J.P. Chapple

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Martin M. Knight

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

N. V. Prodromou

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Pl Beales

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Rachel Ashworth

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

A Waters

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Diaz-Font

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge