Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Pomeranz Krummel is active.

Publication


Featured researches published by Daniel Pomeranz Krummel.


Nature | 2012

MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS

Trevor J. Pugh; Shyamal Dilhan Weeraratne; Tenley C. Archer; Daniel Pomeranz Krummel; Daniel Auclair; James Bochicchio; Mauricio O. Carneiro; Scott L. Carter; Kristian Cibulskis; Rachel L. Erlich; Heidi Greulich; Michael S. Lawrence; Niall J. Lennon; Aaron McKenna; James C. Meldrim; Alex H. Ramos; Michael G. Ross; Carsten Russ; Erica Shefler; Andrey Sivachenko; Brian Sogoloff; Petar Stojanov; Pablo Tamayo; Jill P. Mesirov; Vladimir Amani; Natalia Teider; Soma Sengupta; Jessica Pierre Francois; Paul A. Northcott; Michael D. Taylor

Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, β-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic β-catenin signalling in medulloblastoma.


Biochemistry | 2012

Architecture of the spliceosome.

Clarisse van der Feltz; Kelsey C. Anthony; Axel F. Brilot; Daniel Pomeranz Krummel

Precursor-mRNA splicing is catalyzed by an extraordinarily large and highly dynamic macromolecular assemblage termed the spliceosome. Detailed biochemical and structural study of the spliceosome presents a formidable challenge, but there has recently been significant progress made on this front highlighted by the crystal structure of a 10-subunit human U1 snRNP. This review provides an overview of our current understanding of the architecture of the spliceosome and the RNA-protein complexes integral to its function, the U snRNPs.


Structure | 2014

High-Affinity Gold Nanoparticle Pin to Label and Localize Histidine-Tagged Protein in Macromolecular Assemblies

Kelsey C. Anthony; Changjiang You; Jacob Piehler; Daniel Pomeranz Krummel

There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle ((AuNP)tris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of (AuNP)tris-NTA labeled proteins by electron microscopy is further ensured by the reagents short conformationally restricted linker. We used (AuNP)tris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. (AuNP)tris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our labeling reagent should find broad application in noncovalent, site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies.


Journal of Visualized Experiments | 2017

3D Printing of Biomolecular Models for Research and Pedagogy

Eduardo Da Veiga Beltrame; James Tyrwhitt-Drake; Ian Roy; Raed Shalaby; Jakob Suckale; Daniel Pomeranz Krummel

The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology.


F1000Research | 2017

The evolution of medulloblastoma therapy to personalized medicine.

Soma Sengupta; Daniel Pomeranz Krummel; Scott L. Pomeroy

Recent advances in cancer genomics have revolutionized the characterization and classification of medulloblastomas. According to the current WHO guidelines, medulloblastomas are now classified into the following molecularly defined groups: Wnt signaling pathway (WNT)-activated, sonic hedgehog signaling pathway (SHH)-activated and tumor suppressor protein p53 (TP53)-mutant, SHH-activated and TP53-wildtype, and non-WNT/non-SHH (i.e. group 3 and group 4). Importantly, genomic, epigenomic, and proteomic advances have created a potential paradigm shift in therapeutic options. The challenge now is to (i) translate these observations into new therapeutic approaches and (ii) employ these observations in clinical practice, utilizing the classification following a molecular analysis for diagnosis and application of new subgroup-specific targeted therapeutics.


Methods | 2017

Reversibly constraining spliceosome-substrate complexes by engineering disulfide crosslinks

Patrick McCarthy; Erin L. Garside; Yonatan Meschede-Krasa; Andrew M. MacMillan; Daniel Pomeranz Krummel

The spliceosome is a highly dynamic mega-Dalton enzyme, formed in part by assembly of U snRNPs onto its pre-mRNA substrate transcripts. Early steps in spliceosome assembly are challenging to study biochemically and structurally due to compositional and conformational dynamics. We detail an approach to covalently and reversibly constrain or trap non-covalent pre-mRNA/protein spliceosome complexes. This approach involves engineering a single disulfide bond between a thiol-bearing cysteine sidechain and a proximal backbone phosphate of the pre-mRNA, site-specifically modified with an N-thioalkyl moiety. When distance and angle between reactants is optimal, the sidechain will react with the single N-thioalkyl to form a crosslink upon oxidation. We provide protocols detailing how this has been applied successfully to trap an 11-subunit RNA-protein assembly, the human U1 snRNP, in complex with a pre-mRNA.


Journal of Neuro-oncology | 2018

Rapid discrimination of pediatric brain tumors by mass spectrometry imaging

Amanda R. Clark; David Calligaris; Michael S. Regan; Daniel Pomeranz Krummel; Jeffrey N. Agar; Laura Kallay; Tobey J. MacDonald; Matthew J. Schniederjan; Sandro Santagata; Scott L. Pomeroy; Nathalie Y. R. Agar; Soma Sengupta

PurposeMedulloblastoma, the most common primary pediatric malignant brain tumor, originates in the posterior fossa of the brain. Pineoblastoma, which originates within the pineal gland, is a rarer malignancy that also presents in the pediatric population. Medulloblastoma and pineoblastoma exhibit overlapping clinical features and have similar histopathological characteristics. Histopathological similarities confound rapid diagnoses of these two tumor types. We have conducted a pilot feasibility study analyzing the molecular profile of archived frozen human tumor specimens using mass spectrometry imaging (MSI) to identify potential biomarkers capable of classifying and distinguishing between medulloblastoma and pineoblastoma.MethodsWe performed matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry imaging on eight medulloblastoma biopsy specimens and three pineoblastoma biopsy specimens. Multivariate statistical analyses were performed on the MSI dataset to generate classifiers that distinguish the two tumor types. Lastly, the molecules that were discriminative of tumor type were queried against the Lipid Maps database and identified.ResultsIn this pilot study we show that medulloblastoma and pineoblastoma can be discriminated using molecular profiles determined by MSI. The highest-ranking discriminating classifiers of medulloblastoma and pineoblastoma were glycerophosphoglycerols and sphingolipids, respectively.ConclusionWe demonstrate proof-of-concept that medulloblastoma and pineoblastoma can be rapidly distinguished by using MSI lipid profiles. We identified biomarker candidates capable of distinguishing these two histopathologically similar tumor types. This work expands the current molecular knowledge of medulloblastoma and pineoblastoma by characterizing their lipidomic profiles, which may be useful for developing novel diagnostic, prognostic and therapeutic strategies.


Journal of Visualized Experiments | 2016

Purification of Native Complexes for Structural Study Using a Tandem Affinity Tag Method

Clarisse van der Feltz; Daniel Pomeranz Krummel

Affinity purification approaches have been successful in isolating native complexes for proteomic characterization. Structural heterogeneity and a degree of compositional heterogeneity of a complex do not usually impede progress in conducting such studies. In contrast, a complex intended for structural characterization should be purified in a state that is both compositionally and structurally homogeneous as well as at a higher concentration than required for proteomics. Recently, there have been significant advances in the application of electron microscopy for structure determination of large macromolecular complexes. This has heightened interest in approaches to purify native complexes of sufficient quality and quantity for structural determination by electron microscopy. The Tandem Affinity Purification (TAP) method has been optimized to extract and purify an 18-subunit, ~ 0.8 MDa ribonucleoprotein assembly from budding yeast (Saccharomyces cerevisiae) suitable for negative stain and electron cryo microscopy. Herein is detailed the modifications made to the TAP method, the rationale for making these changes, and the approaches taken to assay for a compositionally and structurally homogeneous complex.Affinity purification approaches have been successful in isolating native complexes for proteomic characterization. Structural heterogeneity and a degree of compositional heterogeneity of a complex do not usually impede progress in conducting such studies. In contrast, a complex intended for structural characterization should be purified in a state that is both compositionally and structurally homogeneous as well as at a higher concentration than required for proteomics. Recently, there have been significant advances in the application of electron microscopy for structure determination of large macromolecular complexes. This has heightened interest in approaches to purify native complexes of sufficient quality and quantity for structural determination by electron microscopy. The Tandem Affinity Purification (TAP) method has been optimized to extract and purify an 18-subunit, ~ 0.8 MDa ribonucleoprotein assembly from budding yeast (Saccharomyces cerevisiae) suitable for negative stain and electron cryo microscopy. Herein is detailed the modifications made to the TAP method, the rationale for making these changes, and the approaches taken to assay for a compositionally and structurally homogeneous complex.


Biophysical Journal | 2011

Crystal Structure of a Ten-Subunit Human Spliceosomal U1 snRNP at 5.5 Å Resolution

Daniel Pomeranz Krummel; Chris Oubridge; Adelaine Leung; Jade Li; Kiyoshi Nagai


Neuro-oncology | 2017

PATH-04. DISTINGUISHING PINEOBLASTOMA FROM MEDULLOBLASTOMAS USING TISSUE MASS SPECTROMETRY IMAGING

David Calligaris; Amanda R. Clark; Laura Kallay; Daniel Pomeranz Krummel; Jeffrey N. Agar; Matthew J. Schniederjan; Scott L. Pomeroy; Nathalie Y. R. Agar; Soma Sengupta

Collaboration


Dive into the Daniel Pomeranz Krummel's collaboration.

Top Co-Authors

Avatar

Soma Sengupta

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott L. Pomeroy

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Calligaris

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

James M. Cook

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge