Daniel Prati
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Prati.
Oecologia | 2005
Oliver Bossdorf; Harald Auge; Lucile Lafuma; William E. Rogers; Evan Siemann; Daniel Prati
Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.
PLOS Biology | 2006
Kristina A. Stinson; Stuart A. Campbell; Jeff R. Powell; Benjamin E. Wolfe; Ragan M. Callaway; Giles C. Thelen; Steven G. Hallett; Daniel Prati; John N. Klironomos
The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.
Ecology | 2008
Ragan M. Callaway; Don Cipollini; Kathryn Barto; Giles C. Thelen; Steven G. Hallett; Daniel Prati; Kristina A. Stinson; John N. Klironomos
Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North Americas most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to naïve native mutualists in the introduced range and indirectly suppress the plants that rely on them.
Ecology | 2001
Peter Stoll; Daniel Prati
We tested the prediction from spatial competition models that intraspecific aggregation may promote coexistence and thus maintain biodiversity with experimental communities of four annual species. Monocultures, three-species mixtures, and the four-species mixture were sown at two densities and with either random or intraspecifically aggregated distributions. There was a hierarchy of competitive abilities among the four species. The weaker competitors showed higher aboveground biomass in the aggregated distribution compared to the random distribution, especially at high density. In one species, intraspecific aggregation resulted in an 86% increase in the number of flowering individuals and a 171% increase in the reproductive biomass at high density. The competitively superior species had a lower biomass in the aggregated distribution than in the random distribution at high density. The data support the hypothesis that the spatial distribution of plants profoundly affects competition in such a way that weaker competitors increase their fitness while stronger competitors are suppressed when grown in the neighborhood of conspecifics. This implies that the spatial arrangement of plants in a community can be an important determinant of species coexistence and biodiversity.
American Journal of Botany | 2004
Daniel Prati; Oliver Bossdorf
Garlic mustard (Alliaria petiolata, Brassicaceae) is an invasive, nonindigenous species currently invading the understory of North American woodlands where it is a serious threat to the native flora. Part of this success might be due to allelopathic interference by garlic mustard. Two congeneric species, the European Geum urbanum and the North American Geum laciniatum, were tested for allelopathic inhibition of germination by garlic mustard. Seeds were germinated either on substrate contaminated by garlic mustard or on substrate with contamination neutralized by activated carbon. Allelopathic effects of native European and invasive North American garlic mustard populations were also compared. Activated carbon increased germination by 14%, indicating that garlic mustard contaminated the substrate through root exudates. Activated carbon in turn counteracted this effect. The two test species differed in their sensitivity to allelopathic interference. North American G. laciniatum had a much stronger increase in germination when activated carbon was added to the substrate, independent of the origin of garlic mustard. In contrast, the European G. urbanum germinated better in substrate precultivated with North American garlic mustard, whereas activated carbon increased its germination only in substrate precultivated with European garlic mustard.
Molecular Ecology | 2005
Walter Durka; Oliver Bossdorf; Daniel Prati; Harald Auge
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (FST = 0.704) and the introduced (FST = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.
Ecology and Evolution | 2014
E. Kathryn Morris; Tancredi Caruso; François Buscot; Markus Fischer; Christine Hancock; Tanja S. Maier; Torsten Meiners; Caroline Müller; Elisabeth Obermaier; Daniel Prati; Stephanie A. Socher; Ilja Sonnemann; Nicole Wäschke; Tesfaye Wubet; Susanne Wurst; Matthias C. Rillig
Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon’s diversity (H’), Simpson’s diversity (D1), Simpson’s dominance (D2), Simpson’s evenness (E), and Berger–Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P. lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H’, even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.
Nature | 2016
Santiago Soliveres; Fons van der Plas; Peter Manning; Daniel Prati; Martin M. Gossner; Swen C. Renner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann
Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.
Ecology Letters | 2015
Eric Allan; Peter Manning; Fabian Alt; Julia Binkenstein; Stefan Blaser; Nico Blüthgen; Stefan Böhm; Fabrice Grassein; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; E. Kathryn Morris; Yvonne Oelmann; Daniel Prati; Swen C. Renner; Matthias C. Rillig; Martin Schaefer; Michael Schloter; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Elisabeth Sorkau; Juliane Steckel; Ingolf Steffen-Dewenter; Barbara Stempfhuber; Marco Tschapka; Christiane N. Weiner; Wolfgang W. Weisser; Michael Werner
Abstract Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.
American Journal of Botany | 2004
Oliver Bossdorf; Stefan Schröder; Daniel Prati; Harald Auge
The European herb garlic mustard (Alliaria petiolata) is a serious invader of North American deciduous forests. One explanation for its success could be that in the absence of specialized herbivores, selection has favored less defended but more vigorous genotypes. This idea was addressed by comparing offspring from several native and introduced Alliaria populations with respect to their palatability to insect herbivores and their tolerance to simulated herbivory. Feeding rates of a specialist weevil from the native range were significantly greater on American plants, suggesting a loss of resistance in the introduced range. In contrast, there was significant population variation but no continent effect in the feeding rates of a generalist caterpillar. After simulated herbivory, A. petiolata showed a substantial regrowth capacity that involved changes in plant growth, architecture, and allocation. Removal of 75% leaf area or of all bolting stems reduced plant fitness to 81% and 58%, respectively, of the fitness of controls. There was no indication of a difference in tolerance between native and introduced Alliaria populations or of a trade-off between tolerance and resistance.