Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Foltz is active.

Publication


Featured researches published by Daniel R. Foltz.


Nature Cell Biology | 2006

The human CENP-A centromeric nucleosome-associated complex

Daniel R. Foltz; Lars E. T. Jansen; Ben E. Black; Aaron O. Bailey; John R. Yates; Don W. Cleveland

The basic element for chromosome inheritance, the centromere, is epigenetically determined in mammals. The prime candidate for specifying centromere identity is the array of nucleosomes assembled with CENP-A, the centromere-specific histone H3 variant. Here, we show that CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of three new human centromere proteins (CENP-M, CENP-N and CENP-T), along with CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Facilitates chromatin transcription (FACT) and nucleophosmin-1 (previously implicated in transcriptional chromatin remodelling and as a multifunctional nuclear chaperone, respectively) are absent from histone H3-containing nucleosomes, but are stably recruited to CENP-A nucleosomes independent of CENP-A NAC. Seven new CENP-A-nucleosome distal (CAD) centromere components (CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S) are identified as assembling on the CENP-A NAC. The CENP-A NAC is essential, as disruption of the complex causes errors of chromosome alignment and segregation that preclude cell survival despite continued centromere-derived mitotic checkpoint signalling.


Journal of Cell Biology | 2007

Propagation of centromeric chromatin requires exit from mitosis

Lars E. T. Jansen; Ben E. Black; Daniel R. Foltz; Don W. Cleveland

Centromeres direct chromosomal inheritance by nucleating assembly of the kinetochore, a large multiprotein complex required for microtubule attachment during mitosis. Centromere identity in humans is epigenetically determined, with no DNA sequence either necessary or sufficient. A prime candidate for the epigenetic mark is assembly into centromeric chromatin of centromere protein A (CENP-A), a histone H3 variant found only at functional centromeres. A new covalent fluorescent pulse-chase labeling approach using SNAP tagging has now been developed and is used to demonstrate that CENP-A bound to a mature centromere is quantitatively and equally partitioned to sister centromeres generated during S phase, thereby remaining stably associated through multiple cell divisions. Loading of nascent CENP-A on the megabase domains of replicated centromere DNA is shown to require passage through mitosis but not microtubule attachment. Very surprisingly, assembly and stabilization of new CENP-A–containing nucleosomes is restricted exclusively to the subsequent G1 phase, demonstrating direct coupling between progression through mitosis and assembly/maturation of the next generation of centromeres.


Cell | 2009

Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP

Daniel R. Foltz; Lars E. T. Jansen; Aaron O. Bailey; John R. Yates; Emily A. Bassett; Stacey Wood; Ben E. Black; Don W. Cleveland

The centromere is responsible for accurate chromosome segregation. Mammalian centromeres are specified epigenetically, with all active centromeres containing centromere-specific chromatin in which CENP-A replaces histone H3 within the nucleosome. The proteins responsible for assembly of human CENP-A into centromeric nucleosomes during the G1 phase of the cell cycle are shown here to be distinct from the chromatin assembly factors previously shown to load other histone H3 variants. Here we demonstrate that prenucleosomal CENP-A is complexed with histone H4, nucleophosmin 1, and HJURP. Recruitment of new CENP-A into nucleosomes at replicated centromeres is dependent on HJURP. Recognition by HJURP is mediated through the centromere targeting domain (CATD) of CENP-A, a region that we demonstrated previously to induce a unique conformational rigidity to both the subnucleosomal CENP-A heterotetramer and the corresponding assembled nucleosome. We propose HJURP to be a cell-cycle-regulated CENP-A-specific histone chaperone required for centromeric chromatin assembly.


Nature | 2004

Structural determinants for generating centromeric chromatin

Ben E. Black; Daniel R. Foltz; Srinivas Chakravarthy; Karolin Luger; Virgil L. Woods; Don W. Cleveland

Mammalian centromeres are not defined by a consensus DNA sequence. In all eukaryotes a hallmark of functional centromeres—both normal ones and those formed aberrantly at atypical loci—is the accumulation of centromere protein A (CENP-A), a histone variant that replaces H3 in centromeric nucleosomes. Here we show using deuterium exchange/mass spectrometry coupled with hydrodynamic measures that CENP-A and histone H4 form sub-nucleosomal tetramers that are more compact and conformationally more rigid than the corresponding tetramers of histones H3 and H4. Substitution into histone H3 of the domain of CENP-A responsible for compaction is sufficient to direct it to centromeres. Thus, the centromere-targeting domain of CENP-A confers a unique structural rigidity to the nucleosomes into which it assembles, and is likely to have a role in maintaining centromere identity.


Current Biology | 2002

Glycogen Synthase Kinase-3β Modulates Notch Signaling and Stability

Daniel R. Foltz; Michelle C. Santiago; Bridget E. Berechid; Jeffrey S. Nye

Notch receptors modulate transcriptional targets following the proteolytic release of the Notch intracellular domain (NotchIC). Phosphorylated forms of NotchIC have been identified within the nucleus and have been associated with CSL members, as well as correlated with regions of the receptor that are required for activity. Genetic studies have suggested that the Drosophila homolog of glycogen synthase kinase-3beta (GSK3beta), Shaggy, may act as a positive modulator of the Notch signaling. GSK3beta is a serine/threonine kinase and is a component of the Wnt/wingless signaling cascade. Here, we observed that GSK3beta was able to bind and phosphorylate Notch1IC in vitro, and attenuation of GSK3beta activity reduced phosphorylation of NotchIC in vivo. Functionally, ligand-activated signaling through the endogenous Notch1 receptor was reduced in GSK3beta null fibroblasts, implying a positive role for GSK3beta in mammalian Notch signaling. As a possible mechanistic explanation of the effect of GSK3beta on Notch signaling, we observed that inhibition of GSK3beta shortened the half-life of Notch1IC. Conversely, activated GSK3beta reduced the quantity of Notch1IC that was degraded by the proteasome. These studies reveal that GSK3beta modulates Notch1 signaling, possibly through direct phosphorylation of the intracellular domain of Notch, and that the activity of GSK3beta protects the intracellular domain from proteasome degradation.


Journal of Cell Biology | 2011

HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore

Meghan C. Barnhart; P. Henning Kuich; Madison E. Stellfox; Jared A. Ward; Emily A. Bassett; Ben E. Black; Daniel R. Foltz

The histone chaperone HJURP is a chromatin assembly factor that recruits CENP-A nucleosomes to centromeric chromatin.


Current Biology | 1999

Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1

J.L Franklin; B.E Berechid; F.B Cutting; Asaf Presente; C.B Chambers; Daniel R. Foltz; Adriana Ferreira; Jeffrey S. Nye

BACKGROUND On the basis of experiments suggesting that Notch and Delta have a role in axonal development in Drosophila neurons, we studied the ability of components of the Notch signaling pathway to modulate neurite formation in mammalian neuroblastoma cells in vitro. RESULTS We observed that N2a neuroblastoma cells expressing an activated form of Notch, Notch1(IC), produced shorter neurites compared with controls, whereas N2a cell lines expressing a dominant-negative Notch1 or a dominant-negative Delta1 construct extended longer neurites with a greater number of primary neurites. We then compared the effects on neurites of contacting Delta1 on another cell and of overexpression of Delta1 in the neurite-extending cell itself. We found that N2a cells co-cultured with Delta1-expressing quail cells produced fewer and shorter neuritic processes. On the other hand, high levels of Delta1 expressed in the N2a cells themselves stimulated neurite extension, increased numbers of primary neurites and induced expression of Jagged1 and Notch1. CONCLUSIONS These studies show that Notch signals can antagonize neurite outgrowth and that repressing endogenous Notch signals enhances neurite outgrowth in neuroblastoma cells. Notch signals therefore act as regulators of neuritic extension in neuroblastoma cells. The response of neuritic processes to Delta1 expressed in the neurite was opposite to that to Delta1 contacted on another cell, however. These results suggest a model in which developing neurons determine their extent of process outgrowth on the basis of the opposing influences on Notch signals of ligands contacted on another cell and ligands expressed in the same cell.


Developmental Cell | 2012

Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression

Mariana C.C. Silva; Dani L. Bodor; Madison E. Stellfox; Nuno Martins; Helfrid Hochegger; Daniel R. Foltz; Lars E. T. Jansen

Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.


Developmental Cell | 2012

HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly

Emily A. Bassett; Jamie E. DeNizio; Meghan C. Barnhart-Dailey; Tanya Panchenko; Nikolina Sekulic; Danielle J. Rogers; Daniel R. Foltz; Ben E. Black

Centromeres are defined by the presence of chromatin containing the histone H3 variant, CENP-A, whose assembly into nucleosomes requires the chromatin assembly factor HJURP. We find that whereas surface-exposed residues in the CENP-A targeting domain (CATD) are the primary sequence determinants for HJURP recognition, buried CATD residues that generate rigidity with H4 are also required for efficient incorporation into centromeres. HJURP contact points adjacent to the CATD on the CENP-A surface are not used for binding specificity but rather to transmit stability broadly throughout the histone fold domains of both CENP-A and H4. Furthermore, an intact CENP-A/CENP-A interface is a requirement for stable chromatin incorporation immediately upon HJURP-mediated assembly. These data offer insight into the mechanism by which HJURP discriminates CENP-A from bulk histone complexes and chaperones CENP-A/H4 for a substantial portion of the cell cycle prior to mediating chromatin assembly at the centromere.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Posttranslational modification of CENP-A influences the conformation of centromeric chromatin

Aaron O. Bailey; Tanya Panchenko; Kizhakke M. Sathyan; Janusz J. Petkowski; Pei Jing Pai; Dina L. Bai; David H. Russell; Ian G. Macara; Jeffrey Shabanowitz; Donald F. Hunt; Ben E. Black; Daniel R. Foltz

Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the α-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere.

Collaboration


Dive into the Daniel R. Foltz's collaboration.

Top Co-Authors

Avatar

Ben E. Black

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars E. T. Jansen

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily A. Bassett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge