Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Weisz is active.

Publication


Featured researches published by Daniel R. Weisz.


Astrophysical Journal Supplement Series | 2009

The ACS Nearby Galaxy Survey Treasury

Julianne J. Dalcanton; Benjamin F. Williams; Anil C. Seth; Andrew E. Dolphin; Jon A. Holtzman; Keith Rosema; Evan D. Skillman; Andrew A. Cole; Léo Girardi; Stephanie M. Gogarten; I. D. Karachentsev; Knut Olsen; Daniel R. Weisz; Charlotte R. Christensen; Kenneth C. Freeman; Karoline M. Gilbert; Carme Batlle i Gallart; Jason Harris; Paul W. Hodge; Roelof S. de Jong; V. E. Karachentseva; Mario Mateo; Peter B. Stetson; Maritza Tavarez; Dennis Zaritsky; Fabio Governato; Thomas P. Quinn

The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D 14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.


The Astrophysical Journal | 2009

COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES

Janice C. Lee; Armando Gil de Paz; Christy A. Tremonti; Robert C. Kennicutt; Samir Salim; M. S. Bothwell; Daniela Calzetti; Julianne J. Dalcanton; Daniel A. Dale; Chad Engelbracht; G. S.J. José Funes; Benjamin D. Johnson; Shoko Sakai; Evan D. Skillman; Liese van Zee; Fabian Walter; Daniel R. Weisz

Using a complete sample of ~300 star-forming galaxies within 11 Mpc of the Milky Way, we evaluate the consistency between star formation rates (SFRs) inferred from the far ultraviolet (FUV) non-ionizing continuum and Hα nebular emission, assuming standard conversion recipes in which the SFR scales linearly with luminosity at a given wavelength. Our analysis probes SFRs over 5 orders of magnitude, down to ultra-low activities on the order of ~10^–4 M_☉ yr^–1. The data are drawn from the 11 Mpc Hα and Ultraviolet Galaxy Survey (11HUGS), which has obtained Hα fluxes from ground-based narrowband imaging, and UV fluxes from imaging with GALEX. For normal spiral galaxies (SFR ~ 1 M_☉ yr^–1), our results are consistent with previous work which has shown that FUV SFRs tend to be lower than Hα SFRs before accounting for internal dust attenuation, but that there is relative consistency between the two tracers after proper corrections are applied. However, a puzzle is encountered at the faint end of the luminosity function. As lower luminosity dwarf galaxies, roughly less active than the Small Magellanic Cloud, are examined, Hα tends to increasingly underpredict the total SFR relative to the FUV. The trend is evident prior to corrections for dust attenuation, which affects the FUV more than the nebular Hα emission, so this general conclusion is robust to the effects of dust. Although past studies have suggested similar trends, this is the first time this effect is probed with a statistical sample for galaxies with SFR ≤0.1 M_☉ yr^–1. By SFR ~ 0.003 M_☉ yr–1, the average Hα-to-FUV flux ratio is lower than expected by a factor of two, and at the lowest SFRs probed, the ratio exhibits an order of magnitude discrepancy for the handful of galaxies that remain in the sample. A range of standard explanations does not appear to be able to fully account for the magnitude of the systematic. Some recent work has argued for a stellar initial mass function which is deficient in high-mass stars in dwarf and low surface brightness galaxies, and we also consider this scenario. Under the assumption that the FUV traces the SFR in dwarf galaxies more robustly, the prescription relating Hα luminosity to SFR is re-calibrated for use in the low SFR regime when FUV data are not available.


The Astrophysical Journal | 2009

The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

Daniel A. Dale; S. A. Cohen; Lent C. Johnson; M. D. Schuster; D. Calzetti; C. W. Engelbracht; A. Gil de Paz; Robert C. Kennicutt; Janice C. Lee; Ayesha Begum; Miwa Block; Julianne J. Dalcanton; Jose G. Funes; Karl D. Gordon; Benjamin D. Johnson; Andrew Robert Marble; Shoko Sakai; Evan D. Skillman; L. van Zee; F. Walter; Daniel R. Weisz; Benjamin F. Williams; S.-Y. Wu; Yanqin Wu

The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.


The Astrophysical Journal | 2010

The ACS Nearby Galaxy Survey Treasury IX. Constraining asymptotic giant branch evolution with old metal-poor galaxies

Léo Girardi; Benjamin F. Williams; Karoline M. Gilbert; Philip Rosenfield; Julianne J. Dalcanton; Paola Marigo; Martha L. Boyer; Andrew E. Dolphin; Daniel R. Weisz; J. Melbourne; Knut Olsen; Anil C. Seth; Evan D. Skillman

In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M_⊙, [Fe/H] ≾ -1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M_⊙. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.


The Astrophysical Journal | 2010

The calibration of monochromatic far-infrared star formation rate indicators

D. Calzetti; S.-Y. Wu; Sungryong Hong; Robert C. Kennicutt; Janice C. Lee; Daniel A. Dale; C. W. Engelbracht; L. van Zee; B. T. Draine; C.-N. Hao; Karl D. Gordon; John Moustakas; E. J. Murphy; Michael W. Regan; Ayesha Begum; Miwa Block; Julianne J. Dalcanton; Jose G. Funes; A. Gil de Paz; Benjamin D. Johnson; Shoko Sakai; Evan D. Skillman; F. Walter; Daniel R. Weisz; Benjamin F. Williams; Yanqin Wu

Spitzer data at 24, 70, and 160 μm and ground-based Hα images are analyzed for a sample of 189 nearby star-forming and starburst galaxies to investigate whether reliable star formation rate (SFR) indicators can be defined using the monochromatic infrared dust emission centered at 70 and 160 μm. We compare recently published recipes for SFR measures using combinations of the 24 μm and observed Hα luminosities with those using 24 μm luminosity alone. From these comparisons, we derive a reference SFR indicator for use in our analysis. Linear correlations between SFR and the 70 μm and 160 μm luminosity are found for L(70) ≳ 1.4 × 10^(42) erg s^(–1) and L(160) ≳ 2 × 10^(42) erg s^(–1), corresponding to SFR ≳ 0.1-0.3 M_☉ yr^(–1), and calibrations of SFRs based on L(70) and L(160) are proposed. Below those two luminosity limits, the relation between SFR and 70 μm (160 μm) luminosity is nonlinear and SFR calibrations become problematic. A more important limitation is the dispersion of the data around the mean trend, which increases for increasing wavelength. The scatter of the 70 μm (160 μm) data around the mean is about 25% (factor ~2) larger than the scatter of the 24 μm data. We interpret this increasing dispersion as an effect of the increasing contribution to the infrared emission of dust heated by stellar populations not associated with the current star formation. Thus, the 70 (160) μm luminosity can be reliably used to trace SFRs in large galaxy samples, but will be of limited utility for individual objects, with the exception of infrared-dominated galaxies. The nonlinear relation between SFR and the 70 and 160 μm emission at faint galaxy luminosities suggests a variety of mechanisms affecting the infrared emission for decreasing luminosity, such as increasing transparency of the interstellar medium, decreasing effective dust temperature, and decreasing filling factor of star-forming regions across the galaxy. In all cases, the calibrations hold for galaxies with oxygen abundance higher than roughly 12 +log(O/H) ~ 8.1. At lower metallicity, the infrared luminosity no longer reliably traces the SFR because galaxies are less dusty and more transparent.


The Astrophysical Journal | 2010

THE NATURE OF STARBURSTS. II. THE DURATION OF STARBURSTS IN DWARF GALAXIES

Kristen B. W. McQuinn; Evan D. Skillman; John M. Cannon; Julianne J. Dalcanton; Andrew E. Dolphin; Sebastian Hidalgo-Rodríguez; Jon A. Holtzman; David V. Stark; Daniel R. Weisz; Benjamin F. Williams

The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and “fossil” starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3–10 Myr often cited, the starburst durations we measure range from 450 to 650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering star formation does not disrupt the overall burst event in our sample of galaxies. While five galaxies present fossil bursts, fifteen galaxies show ongoing bursts and thus the final durations may be longer than we report here for these systems. One galaxy shows a burst that has been ongoing for only 20 Myr; we are likely seeing the beginning of a burst event in this system. Using the duration of the starbursts, we calculate that the bursts deposited 10 53.9 –10 57.2 erg of energy into the interstellar medium through stellar winds and supernovae, and produced 3%−26% of the host galaxy’s mass.


The Astrophysical Journal | 2007

Leo A: A Late-blooming Survivor of the Epoch of Reionization in the Local Group

Andrew A. Cole; Evan D. Skillman; Eline Tolstoy; John S. Gallagher; Antonio Aparicio; Andrew E. Dolphin; Carme Gallart; Sebastian L. Hidalgo; Abhijit Saha; Peter B. Stetson; Daniel R. Weisz

As part of a major program to use isolated Local Group dwarf galaxies as near-field probes of cosmology, we have obtained deep images of the dwarf irregular galaxy Leo A with the Advanced Camera for Surveys aboard the Hubble Space Telescope. From these images we have constructed a color-magnitude diagram (CMD) reaching apparent [ absolute] magnitudes of, the deepest ever achieved for any (M-475, M-814) greater than or similar to (29.0 [+ 4.4], 27.9 [+ 3.4]) irregular galaxy beyond the Magellanic Clouds. We derive the star formation rate ( SFR) as a function of time over the entire history of the galaxy. We find that over 90% of all the star formation that ever occurred in Leo A happened more recently than 8 Gyr ago. The CMD shows only a very small amount of star formation in the first few billion years after the big bang; a possible burst at the oldest ages cannot be claimed with high confidence. The peak SFR occurred approximate to 1.5-4 Gyr ago, at a level 5-10 times the current value. Our modeling indicates that Leo A has experienced very little metallicity evolution; the mean inferred metallicity is consistent with measurements of the present-day gas-phase oxygen abundance. We cannot exclude a scenario in which all of the ancient star formation occurred prior to the end of the era of reionization, but it seems unlikely that the lack of star formation prior to approximate to 8 Gyr ago was due to early loss or exhaustion of the in situ gas reservoir.


The Astrophysical Journal | 2008

The Recent Star Formation Histories of M81 Group Dwarf Irregular Galaxies

Daniel R. Weisz; Evan D. Skillman; John M. Cannon; Andrew E. Dolphin; Robert C. Kennicutt; Janice Lee; Fabian Walter

We present observations and analysis of nine dwarf irregular galaxies (dIs) in the M81 Group taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The nine galaxies (the Garland, M81 Dwarf A, DDO 53, Ho IX, Ho I, DDO 165, NGC 2366, Ho II, and IC 2574) span 6 mag in luminosity, a factor of 1000 in current star formation rate, and 0.5 dex in metallicity. We use color-magnitude diagrams of resolved stellar populations to study the star formation histories (SFHs) of these galaxies. Dividing the sample at MB = − 15, we analyze the similarities and differences in the SFHs, birthrate parameters (b), fraction of stars formed per time interval (f), and spatial distribution of stellar components. As function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG) and, again, find little variation in SF parameters. Our average f parameters are consistent with a constant SFH; however, individual galaxies can show significant departures from this. We find this result underlines the importance of stochastic SF in dIs. We also compare possible formation scenarios of the fainter and candidate tidal dwarfs (TDGs) in the M81 Group. The SFHs and the spatial distribution of associated red stars suggest that the Garland and Ho IX are not dIs and are potentially TDGs. A noteworthy difference between the LG and the M81 Group is the lack of TDGs in the LG.


Publications of the Astronomical Society of the Pacific | 2008

Revised bolometric corrections and interstellar extinction coefficients for the ACS and WFPC2 photometric systems

Léo Girardi; Julianne J. Dalcanton; Benjamin F. Williams; Roelof S. de Jong; Carme Batlle i Gallart; M. Monelli; M. A. T. Groenewegen; Jon A. Holtzman; Knut Olsen; Anil C. Seth; Daniel R. Weisz

We present extensive tables of bolometric corrections and interstellar extinction coefficients for the WFPC2 and ACS (both WFC and HRC) photometric systems. They are derived from synthetic photometry applied to a database of spectral energy distributions covering a large range of effective temperatures, surface gravity, and metal content. Carbon stars are also considered. The zero points take into consideration the new high-accuracy Vega fluxes from Bohlin. These tables are employed to transform Padova isochrones into WFPC2 and ACS photometric systems using interstellar extinction coefficients on a star-to-star basis. All data are available either in tabular form or via an interactive web interface in the case of the isochrones. Preliminary tables for the WFC3 camera are also included in the database.


The Astrophysical Journal | 2011

THE ACS LCID PROJECT. V. THE STAR FORMATION HISTORY OF THE DWARF GALAXY LGS-3: CLUES TO COSMIC REIONIZATION AND FEEDBACK*

Sebastian L. Hidalgo; Antonio Aparicio; Evan D. Skillman; M. Monelli; Carme Gallart; Andrew A. Cole; Andrew E. Dolphin; Daniel R. Weisz; Edouard J. Bernard; Santi Cassisi; Lucio Mayer; Peter B. Stetson; Eline Tolstoy; Henry C. Ferguson

We present an analysis of the star formation history (SFH) of the transition-type (dIrr/dSph) Local Group galaxy LGS-3 (Pisces) based on deep photometry obtained with the Advanced Camera for Surveys onboard the Hubble Space Telescope. Our observations reach the oldest main-sequence turnoffs at high signal to noise, allowing a time resolution at the oldest ages of σ ~ 1.1 Gyr. Our analysis, based on three different SFH codes, shows that the SFH of LGS-3 is dominated by a main episode ~11.7 Gyr ago with a duration of ~1.4 Gyr. Subsequently, LGS-3 continued forming stars until the present, although at a much lower rate. Roughly 90% of the stars in LGS-3 were formed in the initial episode of star formation. Extensive tests of self-consistency, uniqueness, and stability of the solution have been performed together with the IAC-star/IAC-pop/MinnIAC codes, and these results are found to be independent of the photometric reduction package, the stellar evolution library, and the SFH recovery method. There is little evidence of chemical enrichment during the initial episode of star formation, after which the metallicity increased more steeply reaching a present-day value of Z ~ 0.0025. This suggests a scenario in which LGS-3 first formed stars mainly from infalling fresh gas, and after about 9 Gyr ago, from a larger fraction of recycled gas. The lack of early chemical enrichment is in contrast to that observed in the isolated dSph galaxies of comparable luminosity, implying that the dSphs were more massive and subjected to more tidal stripping. We compare the SFH of LGS-3 with expectations from cosmological models. Most or all the star formation was produced in LGS-3 after the reionization epoch, assumed to be completed at z ~ 6 or ~12.7 Gyr ago. The total mass of the galaxy is estimated to be between 2 and 4 × 108 M ☉ corresponding to circular velocities between 28 km s–1 and 36 km s–1. These values are close to but somewhat above the limit of 30 km s–1 below which the UV background is expected to prevent any star formation after reionization. Feedback from supernovae (SNe) associated with the initial episode of star formation (mechanical luminosity from SNe Lw = 5.3 × 1038 erg s–1) is probably inadequate to completely blow away the gas. However, the combined effects of SN feedback and UV background heating might be expected to completely halt star formation at the reionization epoch for the low mass of LGS-3; this suggests that self-shielding is important to the early evolution of galaxies in this mass range.

Collaboration


Dive into the Daniel R. Weisz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karoline M. Gilbert

Space Telescope Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge