Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karoline M. Gilbert is active.

Publication


Featured researches published by Karoline M. Gilbert.


Astrophysical Journal Supplement Series | 2009

The ACS Nearby Galaxy Survey Treasury

Julianne J. Dalcanton; Benjamin F. Williams; Anil C. Seth; Andrew E. Dolphin; Jon A. Holtzman; Keith Rosema; Evan D. Skillman; Andrew A. Cole; Léo Girardi; Stephanie M. Gogarten; I. D. Karachentsev; Knut Olsen; Daniel R. Weisz; Charlotte R. Christensen; Kenneth C. Freeman; Karoline M. Gilbert; Carme Batlle i Gallart; Jason Harris; Paul W. Hodge; Roelof S. de Jong; V. E. Karachentseva; Mario Mateo; Peter B. Stetson; Maritza Tavarez; Dennis Zaritsky; Fabio Governato; Thomas P. Quinn

The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D 14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.


The Astrophysical Journal | 2010

The ACS Nearby Galaxy Survey Treasury IX. Constraining asymptotic giant branch evolution with old metal-poor galaxies

Léo Girardi; Benjamin F. Williams; Karoline M. Gilbert; Philip Rosenfield; Julianne J. Dalcanton; Paola Marigo; Martha L. Boyer; Andrew E. Dolphin; Daniel R. Weisz; J. Melbourne; Knut Olsen; Anil C. Seth; Evan D. Skillman

In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M_⊙, [Fe/H] ≾ -1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M_⊙. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.


The Astrophysical Journal | 2011

THE ACS NEARBY GALAXY SURVEY TREASURY. VIII. THE GLOBAL STAR FORMATION HISTORIES OF 60 DWARF GALAXIES IN THE LOCAL VOLUME

Daniel R. Weisz; Julianne J. Dalcanton; Benjamin F. Williams; Karoline M. Gilbert; Evan D. Skillman; Anil C. Seth; Andrew E. Dolphin; Kristen B. W. McQuinn; Stephanie M. Gogarten; Jon A. Holtzman; Keith Rosema; Andrew A. Cole; I. D. Karachentsev; Dennis Zaritsky

We present uniformly measured star formation histories (SFHs) of 60 nearby (D less than or similar to 4 Mpc) dwarf galaxies based on color-magnitude diagrams of resolved stellar populations from images taken with the Hubble Space Telescope and analyzed as part of the ACS Nearby Galaxy Survey Treasury program (ANGST). This volume-limited sample contains 12 dwarf spheroidal (dSph)/dwarf elliptical (dE), 5 dwarf spiral, 28 dwarf irregular (dI), 12 dSph/dI (transition), and 3 tidal dwarf galaxies. The sample spans a range of similar to 10 mag in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best-fit SFHs, we find three significant results for dwarf galaxies in the ANGST volume: (1) the majority of dwarf galaxies formed the bulk of their mass prior to z similar to 1, regardless of current morphological type; (2) the mean SFHs of dIs, transition dwarf galaxies (dTrans), and dSphs are similar over most of cosmic time, and only begin to diverge a few Gyr ago, with the clearest differences between the three appearing during the most recent 1 Gyr; and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e. g., single bursts, constant star formation rates (SFRs), or smooth, exponentially declining SFRs. The mean SFHs show clear divergence from the cosmic SFH at z less than or similar to 0.7, which could be evidence that low-mass systems have experienced delayed star formation relative to more massive galaxies. The sample shows a strong density-morphology relationship, such that the dSphs in the sample are less isolated than the dIs. We find that the transition from a gas-rich to gas-poor galaxy cannot be solely due to internal mechanisms such as stellar feedback, and instead is likely the result of external mechanisms, e. g., ram pressure and tidal stripping and tidal forces. In terms of their environments, SFHs, and gas fractions, the majority of the dTrans appear to be low-mass dIs that simply lack Ha emission, similar to Local Group (LG) dTrans DDO 210. However, a handful of dTrans have remarkably low gas fractions, suggesting that they have nearly exhausted their gas supply, analogous to LG dTrans such as Phoenix. Finally, we have also included extensive exploration of uncertainties in the SFH recovery method, including the optimization of time resolution, the effects of photometric depth, and impact of systematic uncertainties due to the limitations in current stellar evolution models.


Astrophysical Journal Supplement Series | 2012

THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY

Julianne J. Dalcanton; Benjamin F. Williams; Dustin Lang; Tod R. Lauer; Jason S. Kalirai; Anil C. Seth; Andrew E. Dolphin; Philip Rosenfield; Daniel R. Weisz; Eric F. Bell; Luciana Bianchi; Martha L. Boyer; Nelson Caldwell; Hui Dong; Claire E. Dorman; Karoline M. Gilbert; Léo Girardi; Stephanie M. Gogarten; Karl D. Gordon; Puragra Guhathakurta; Paul W. Hodge; Jon A. Holtzman; L. Clifton Johnson; Søren S. Larsen; Alexia R. Lewis; J. Melbourne; Knut Olsen; Hans-Walter Rix; Keith Rosema; Abhijit Saha

The Panchromatic Hubble Andromeda Treasury is an ongoing Hubble Space Telescope Multi-Cycle Treasury program to image ~1/3 of M31s star-forming disk in six filters, spanning from the ultraviolet (UV) to the near-infrared (NIR). We use the Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) to resolve the galaxy into millions of individual stars with projected radii from 0 to 20 kpc. The full survey will cover a contiguous 0.5 deg^(2)area in 828 orbits. Imaging is being obtained in the F275W and F336W filters on the WFC3/UVIS camera, F475W and F814W on ACS/WFC, and F110W and F160W on WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The data produce photometry with a signal-to-noise ratio of 4 at m F_(275W) = 25.1, m_(F336W) = 24.9, m_(F475W) = 27.9, m_(F814W) = 27.1, m_(F110W) = 25.5, and m_(F160W) = 24.6 for single pointings in the uncrowded outer disk; in the inner disk, however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 mag brighter. Observations are carried out in two orbits per pointing, split between WFC3/UVIS and WFC3/IR cameras in primary mode, with ACS/WFC run in parallel. All pointings are dithered to produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products available for the survey, along with extensive testing of photometric stability, crowding errors, spatially dependent photometric biases, and telescope pointing control. We also report on initial fits to the structure of M31s disk, derived from the density of red giant branch stars, in a way that is independent of assumed mass-to-light ratios and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr.


The Astrophysical Journal | 2006

The Metal-poor Halo of the Andromeda Spiral Galaxy (M31)

Jasonjot Singh Kalirai; Karoline M. Gilbert; Puragra Guhathakurta; Steven R. Majewski; James Craig Ostheimer; R. Michael Rich; Michael C. Cooper; David B. Reitzel; Richard J. Patterson

We present spectroscopic observations of red giant branch (RGB) stars over a large expanse in the halo of the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. Using a combination of five photometric/spectroscopic diagnostics?(1) radial velocity, (2) intermediate-width DDO51 photometry, (3) Na I equivalent width (surface gravity-sensitive), (4) position in the color-magnitude diagram, and (5) comparison between photometric and spectroscopic [Fe/H] estimates?we isolate over 250 bona fide M31 bulge and halo RGB stars located in 12 fields ranging from R = 12 to 165 kpc from the center of M31 (47 of these stars are halo members with R > 60 kpc). We derive the M31 spheroid (bulge and halo) metallicity distribution function and find it to be systematically more metal-poor with increasing radius, shifting from [Fe/H] = -0.47 ? 0.03 (? = 0.39) at R 60 kpc, assuming [?/Fe] = 0.0. These results indicate the presence of a metal-poor RGB population at large radial distances out to at least R = 160 kpc, thereby supporting our recent discovery of a stellar halo in M31 (structural component with an R-2 power-law surface brightness profile). This component has a distinct metallicity distribution from M31s bulge. If we assume an ?-enhancement of [?/Fe] = +0.3 for M31s halo, we derive [Fe/H] = -1.5 ? 0.1 (? = 0.7). Therefore, the mean metallicity and metallicity spread of this newly found remote M31 RGB population are similar to those of the Milky Way halo.


The Astrophysical Journal | 2011

THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY

Stephane Courteau; Lawrence M. Widrow; M. McDonald; Puragra Guhathakurta; Karoline M. Gilbert; Yucong Zhu; Rachael L. Beaton; Steven R. Majewski

We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31s structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sbulge with shape index n � 2.2 ± .3 and effective radius Re = 1.0 ± 0.2 kpc, and a dust-free exponential disk of scale length Rd = 5.3 ± .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities (� = 1 − b/a) of the bulge and the disk from the IRAC image are 0.37 ± 0.03 and 0.73 ± 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index �− 2.5 ± 0. 2( or−3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range Rmin 1.2 kpc. The disk takes over in the range 1.2 kpc Rmin 9 kpc, whereas the halo dominates at Rmin 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the structural parameters of the M31 bulge, disk, and halo amount to 20%. If M31 and the Milky Way are at all typical, faint stellar halos should be routinely detected in galaxy surveys reaching below μi � 27 mag arcsec −2 . We stress that our results rely on this photometric analysis alone. Structural parameters may change when other fundamental constraints, such as those provided by abundance gradients and stellar kinematics, are considered simultaneously.


The Astrophysical Journal | 2012

THE SPLASH SURVEY: SPECTROSCOPY OF 15 M31 DWARF SPHEROIDAL SATELLITE GALAXIES*

Erik J. Tollerud; Rachael L. Beaton; Marla Geha; James S. Bullock; Puragra Guhathakurta; Jason S. Kalirai; Steven R. Majewski; Evan N. Kirby; Karoline M. Gilbert; B. Yniguez; Richard J. Patterson; James Craig Ostheimer; Jeff Cooke; Claire E. Dorman; Abrar Choudhury; Michael C. Cooper

We present a resolved star spectroscopic survey of 15 dwarf spheroidal (dSph) satellites of the Andromeda galaxy (M31). We filter foreground contamination from Milky Way (MW) stars, noting that MW substructure is evident in this contaminant sample. We also filter M31 halo field giant stars and identify the remainder as probable dSph members. We then use these members to determine the kinematical properties of the dSphs. For the first time, we confirm that And XVIII, XXI, and XXII show kinematics consistent with bound, dark-matter-dominated galaxies. From the velocity dispersions for the full sample of dSphs we determine masses, which we combine with the size and luminosity of the galaxies to produce mass-size-luminosity scaling relations. With these scalings we determine that the M31 dSphs are fully consistent with the MW dSphs, suggesting that the well-studied MW satellite population provides a fair sample for broader conclusions. We also estimate dark matter halo masses of the satellites and find that there is no sign that the luminosity of these galaxies depends on their dark halo mass, a result consistent with what is seen for MW dwarfs. Two of the M31 dSphs (And XV, XVI) have estimated maximum circular velocities smaller than 12 km s^(–1) (to 1σ), which likely places them within the lowest-mass dark matter halos known to host stars (along with Bootes I of the MW). Finally, we use the systemic velocities of the M31 satellites to estimate the mass of the M31 halo, obtaining a virial mass consistent with previous results.


The Astrophysical Journal | 2010

THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DWARF SPHEROIDAL GALAXIES

Jason S. Kalirai; Rachael L. Beaton; Marla Geha; Karoline M. Gilbert; Puragra Guhathakurta; Evan N. Kirby; Steven R. Majewski; James Craig Ostheimer; Richard J. Patterson; Joe Wolf

We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromedas Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of member stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s^(–1), includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each systems mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromedas total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L ~ 10^5 and 10^7 L_☉, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31s brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower luminosities between L = 10^4 and 10^6 L_☉, we find that the sizes of dSphs in the two hosts significantly overlap and that four of the faintest M31 dSphs are smaller than Milky Way counterparts. The first dynamical mass measurements of six M31 dSphs over a large range in luminosity indicate similar mass-to-light ratios compared to Milky Way dSphs among the brighter satellites, and smaller mass-to-light ratios among the fainter satellites. Combined with their similar or larger sizes at these luminosities, these results hint that the M31 dSphs are systematically less dense than Milky Way dSphs. The implications of these similarities and differences for general understanding of galaxy formation and evolution are summarized.


The Astrophysical Journal | 2010

THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DWARF SPHEROIDAL GALAXIES {sup ,}

Jason S. Kalirai; Rachael L. Beaton; Steven R. Majewski; James Craig Ostheimer; Richard J. Patterson; Marla Geha; Karoline M. Gilbert; Puragra Guhathakurta; Evan N. Kirby

We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromedas Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of member stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s^(–1), includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each systems mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromedas total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L ~ 10^5 and 10^7 L_☉, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31s brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower luminosities between L = 10^4 and 10^6 L_☉, we find that the sizes of dSphs in the two hosts significantly overlap and that four of the faintest M31 dSphs are smaller than Milky Way counterparts. The first dynamical mass measurements of six M31 dSphs over a large range in luminosity indicate similar mass-to-light ratios compared to Milky Way dSphs among the brighter satellites, and smaller mass-to-light ratios among the fainter satellites. Combined with their similar or larger sizes at these luminosities, these results hint that the M31 dSphs are systematically less dense than Milky Way dSphs. The implications of these similarities and differences for general understanding of galaxy formation and evolution are summarized.


The Astrophysical Journal | 2006

A New Method for Isolating M31 Red Giant Stars: The Discovery of Stars out to a Radial Distance of 165 kpc

Karoline M. Gilbert; Puragra Guhathakurta; Jasonjot Singh Kalirai; R. Michael Rich; Steven R. Majewski; James Craig Ostheimer; David B. Reitzel; A. Javier Cenarro; Michael C. Cooper; Carynn Luine; Richard J. Patterson

We present a method for isolating a clean sample of red giant branch stars in the outer regions of M31. Our study is based on an ongoing spectroscopic survey using the DEIMOS instrument on the Keck II 10 m telescope. The survey aims to study the kinematics, (sub)structure, and metallicity of M31s halo. Although most of our spectroscopic targets were photometrically screened to reject foreground Milky Way dwarf star contaminants, dwarf stars still constitute a substantial fraction of the observed spectra in the sparse outer halo. Our likelihood-based method for isolating M31 red giants uses five criteria: (1) radial velocity, (2) photometry in the intermediate-width DDO51 band to measure the strength of the MgH/Mg b absorption features, (3) strength of the Na I λ8190 absorption line doublet, (4) location within an (I, V - I) color-magnitude diagram, and (5) comparison of photometric (color-magnitude diagram based) versus spectroscopic (Ca II λ8500 triplet based) metallicity estimates. We also discuss other potential giant/dwarf separation criteria: the strength of the K I absorption lines at 7665 and 7699 A and the TiO bands at 7100, 7600, and 8500 A. Training sets consisting of definite M31 red giants and Galactic dwarf stars are used to derive empirical probability distribution functions for each diagnostic. These functions are used to calculate the likelihood that a given star is a red giant in M31 versus a Milky Way dwarf star. Using our diagnostic method, we isolate 40 M31 red giants beyond a projected distance of R = 60 kpc from the galaxys center, including three red giants at R ~ 165 kpc. The ability to identify individual M31 red giant stars gives us an unprecedented level of sensitivity in studying the properties of the galaxys outer halo.

Collaboration


Dive into the Karoline M. Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R. Majewski

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason S. Kalirai

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge