Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Zollinger is active.

Publication


Featured researches published by Daniel R. Zollinger.


Neuron | 2013

Three Mechanisms Assemble Central Nervous System Nodes of Ranvier

Keiichiro Susuki; Kae Jiun Chang; Daniel R. Zollinger; Yanhong Liu; Yasuhiro Ogawa; Yael Eshed-Eisenbach; María T. Dours-Zimmermann; Juan A. Oses-Prieto; Alma L. Burlingame; Constanze I. Seidenbecher; Dieter R. Zimmermann; Toshitaka Oohashi; Elior Peles; Matthew N. Rasband

Rapid action potential propagation in myelinated axons requires Na⁺ channel clustering at nodes of Ranvier. However, the mechanism of clustering at CNS nodes remains poorly understood. Here, we show that the assembly of nodes of Ranvier in the CNS involves three mechanisms: a glia-derived extracellular matrix (ECM) complex containing proteoglycans and adhesion molecules that cluster NF186, paranodal axoglial junctions that function as barriers to restrict the position of nodal proteins, and axonal cytoskeletal scaffolds (CSs) that stabilize nodal Na⁺ channels. We show that while mice with a single disrupted mechanism had mostly normal nodes, disruptions of the ECM and paranodal barrier, the ECM and CS, or the paranodal barrier and CS all lead to juvenile lethality, profound motor dysfunction, and significantly reduced Na⁺ channel clustering. Our results demonstrate that ECM, paranodal, and axonal cytoskeletal mechanisms ensure robust CNS nodal Na⁺ channel clustering.


Nature Neuroscience | 2014

A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier

Tammy Szu-Yu Ho; Daniel R. Zollinger; Kae-Jiun Chang; Mingxuan Xu; Edward C. Cooper; Michael C. Stankewich; Vann Bennett; Matthew N. Rasband

The scaffolding protein ankyrin-G is required for Na+ channel clustering at axon initial segments. It is also considered essential for Na+ channel clustering at nodes of Ranvier to facilitate fast and efficient action potential propagation. However, notwithstanding these widely accepted roles, we show here that ankyrin-G is dispensable for nodal Na+ channel clustering in vivo. Unexpectedly, in the absence of ankyrin-G, erythrocyte ankyrin (ankyrin-R) and its binding partner βI spectrin substitute for and rescue nodal Na+ channel clustering. In addition, channel clustering is also rescued after loss of nodal βIV spectrin by βI spectrin and ankyrin-R. In mice lacking both ankyrin-G and ankyrin-R, Na+ channels fail to cluster at nodes. Thus, ankyrin R–βI spectrin protein complexes function as secondary reserve Na+ channel clustering machinery, and two independent ankyrin-spectrin protein complexes exist in myelinated axons to cluster Na+ channels at nodes of Ranvier.


Nature Neuroscience | 2014

Glial ankyrins facilitate paranodal axoglial junction assembly

Kae-Jiun Chang; Daniel R. Zollinger; Keiichiro Susuki; Diane L. Sherman; Michael A. Makara; Peter J. Brophy; Edward C. Cooper; Vann Bennett; Peter J. Mohler; Matthew N. Rasband

Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS.


Neuron | 2015

Daam2-PIP5K Is a Regulatory Pathway for Wnt Signaling and Therapeutic Target for Remyelination in the CNS

Hyun Kyoung Lee; Lesley S. Chaboub; Wenyi Zhu; Daniel R. Zollinger; Matthew N. Rasband; Stephen P.J. Fancy; Benjamin Deneen

Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS; however, contributions of proximal regulators of the Wnt receptor complex to these processes remain undefined. To identify components of the Wnt pathway that regulate these processes, we applied a multifaceted discovery platform and found that Daam2-PIP5K comprise a novel pathway regulating Wnt signaling and myelination. Using dorsal patterning of the chick spinal cord we found that Daam2 promotes Wnt signaling and receptor complex formation through PIP5K-PIP2. Analysis of Daam2 function in oligodendrocytes (OLs) revealed that it suppresses OL differentiation during development, after white matter injury (WMI), and is expressed in human white matter lesions. These findings suggest a pharmacological strategy to inhibit Daam2-PIP5K function, application of which stimulates remyelination after WMI. Put together, our studies integrate information from multiple systems to identify a novel regulatory pathway for Wnt signaling and potential therapeutic target for WMI.


eLife | 2017

The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier

Veronique Amor; Chuansheng Zhang; Anna Vainshtein; Ao Zhang; Daniel R. Zollinger; Yael Eshed-Eisenbach; Peter J. Brophy; Matthew N. Rasband; Elior Peles

A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton. DOI: http://dx.doi.org/10.7554/eLife.21392.001


The Journal of Neuroscience | 2015

BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells

Moritoshi Hirono; Yasuhiro Ogawa; Kaori Misono; Daniel R. Zollinger; James S. Trimmer; Matthew N. Rasband; Hiroaki Misonou

In myelinated axons, K+ channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na+ channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K+ channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K+ channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni2+ elicited a similar effect on APs, indicating the involvement of Ni2+-sensitive Ca2+ channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex.


Annual Review of Cell and Developmental Biology | 2015

The ins and outs of polarized axonal domains.

Daniel R. Zollinger; Kelli Baalman; Matthew N. Rasband

Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.


The Journal of Neuroscience | 2017

An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration

Claire Yu-Mei Huang; Chuansheng Zhang; Daniel R. Zollinger; Christophe Leterrier; Matthew N. Rasband

Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K+ channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration.


The Journal of Neuroscience | 2015

The Polarity Protein Pals1 Regulates Radial Sorting of Axons

Daniel R. Zollinger; Kae-Jiun Chang; Kelli Baalman; Seonhee Kim; Matthew N. Rasband

Myelin is essential for rapid and efficient action potential propagation in vertebrates. However, the molecular mechanisms regulating myelination remain incompletely characterized. For example, even before myelination begins in the PNS, Schwann cells must radially sort axons to form 1:1 associations. Schwann cells then ensheathe and wrap axons, and establish polarized, subcellular domains, including apical and basolateral domains, paranodes, and Schmidt-Lanterman incisures. Intriguingly, polarity proteins, such as Pals1/Mpp5, are highly enriched in some of these domains, suggesting that they may regulate the polarity of Schwann cells and myelination. To test this, we generated mice with Schwann cells and oligodendrocytes that lack Pals1. During early development of the PNS, Pals1-deficient mice had impaired radial sorting of axons, delayed myelination, and reduced nerve conduction velocities. Although myelination and conduction velocities eventually recovered, polyaxonal myelination remained a prominent feature of adult Pals1-deficient nerves. Despite the enrichment of Pals1 at paranodes and incisures of control mice, nodes of Ranvier and paranodes were unaffected in Pals1-deficient mice, although we measured a significant increase in the number of incisures. As in other polarized cells, we found that Pals1 interacts with Par3 and loss of Pals1 reduced levels of Par3 in Schwann cells. In the CNS, loss of Pals1 affected neither myelination nor the establishment of polarized membrane domains. These results demonstrate that Schwann cells and oligodendrocytes use distinct mechanisms to control their polarity, and that radial sorting in the PNS is a key polarization event that requires Pals1. SIGNIFICANCE STATEMENT This paper reveals the role of the canonical polarity protein Pals1 in radial sorting of axons by Schwann cells. Radial sorting is essential for efficient and proper myelination and is disrupted in some types of congenital muscular dystrophy.


Brain | 2018

Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury

Bruce Cree; Jianqin Niu; Kimberly K Hoi; Chao Zhao; Scott D. Caganap; Roland G. Henry; Dang Q. Dao; Daniel R. Zollinger; Feng Mei; Yun-An A. Shen; Robin J.M. Franklin; Erik M. Ullian; Lan Xiao; Jonah R. Chan; Stephen P.J. Fancy

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.

Collaboration


Dive into the Daniel R. Zollinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuansheng Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kae-Jiun Chang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhiro Ogawa

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward C. Cooper

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

James S. Trimmer

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Jeffrey L. Dupree

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge