Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kae-Jiun Chang is active.

Publication


Featured researches published by Kae-Jiun Chang.


Cell | 2012

A Distal Axonal Cytoskeleton Forms an Intra-Axonal Boundary that Controls Axon Initial Segment Assembly

Mauricio R. Galiano; Smita Jha; Tammy Szu-Yu Ho; Chuansheng Zhang; Yasuhiro Ogawa; Kae-Jiun Chang; Michael C. Stankewich; Peter J. Mohler; Matthew N. Rasband

AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and βII-spectrin, that defines a boundary limiting ankG to the proximal axon. Experimentally moving this boundary altered the length of ankG staining in the proximal axon, whereas disruption of the boundary through silencing of ankB, αII-spectrin, or βII-spectrin expression blocked AIS assembly and permitted ankG to redistribute throughout the distal axon. In support of an essential role for the distal cytoskeleton in ankG clustering, we also found that αII and βII-spectrin-deficient mice had disrupted AIS. Thus, the distal axonal cytoskeleton functions as an intra-axonal boundary restricting ankG to the AIS.


The Journal of Neuroscience | 2012

An AnkyrinG-Binding Motif Is Necessary and Sufficient for Targeting Nav1.6 Sodium Channels to Axon Initial Segments and Nodes of Ranvier

Andreas Gasser; Tammy Szu-Yu Ho; Xiaoyang Cheng; Kae-Jiun Chang; Stephen G. Waxman; Matthew N. Rasband; Sulayman D. Dib-Hajj

Neurons are highly polarized cells with functionally distinct axonal and somatodendritic compartments. Voltage-gated sodium channels Nav1.2 and Nav1.6 are highly enriched at axon initial segments (AISs) and nodes of Ranvier, where they are necessary for generation and propagation of action potentials. Previous studies using reporter proteins in unmyelinated cultured neurons suggest that an ankyrinG-binding motif within intracellular loop 2 (L2) of sodium channels is sufficient for targeting these channels to the AIS, but mechanisms of channel targeting to nodes remain poorly understood. Using a CD4-Nav1.2/L2 reporter protein in rat dorsal root ganglion neuron–Schwann cell myelinating cocultures, we show that the ankyrinG-binding motif is sufficient for protein targeting to nodes of Ranvier. However, reporter proteins cannot capture the complexity of full-length channels. To determine how native, full-length sodium channels are clustered in axons, and to show the feasibility of studying these channels in vivo, we constructed fluorescently tagged and functional mouse Nav1.6 channels for in vivo analysis using in utero brain electroporation. We show here that wild-type tagged-Nav1.6 channels are efficiently clustered at nodes and AISs in vivo. Furthermore, we show that mutation of a single invariant glutamic acid residue (E1100) within the ankyrinG-binding motif blocked Nav1.6 targeting in neurons both in vitro and in vivo. Additionally, we show that caseine kinase phosphorylation sites within this motif, while not essential for targeting, can modulate clustering at the AIS. Thus, the ankyrinG-binding motif is both necessary and sufficient for the clustering of sodium channels at nodes of Ranvier and the AIS.


Nature Neuroscience | 2014

A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier

Tammy Szu-Yu Ho; Daniel R. Zollinger; Kae-Jiun Chang; Mingxuan Xu; Edward C. Cooper; Michael C. Stankewich; Vann Bennett; Matthew N. Rasband

The scaffolding protein ankyrin-G is required for Na+ channel clustering at axon initial segments. It is also considered essential for Na+ channel clustering at nodes of Ranvier to facilitate fast and efficient action potential propagation. However, notwithstanding these widely accepted roles, we show here that ankyrin-G is dispensable for nodal Na+ channel clustering in vivo. Unexpectedly, in the absence of ankyrin-G, erythrocyte ankyrin (ankyrin-R) and its binding partner βI spectrin substitute for and rescue nodal Na+ channel clustering. In addition, channel clustering is also rescued after loss of nodal βIV spectrin by βI spectrin and ankyrin-R. In mice lacking both ankyrin-G and ankyrin-R, Na+ channels fail to cluster at nodes. Thus, ankyrin R–βI spectrin protein complexes function as secondary reserve Na+ channel clustering machinery, and two independent ankyrin-spectrin protein complexes exist in myelinated axons to cluster Na+ channels at nodes of Ranvier.


Nature Neuroscience | 2014

Glial ankyrins facilitate paranodal axoglial junction assembly

Kae-Jiun Chang; Daniel R. Zollinger; Keiichiro Susuki; Diane L. Sherman; Michael A. Makara; Peter J. Brophy; Edward C. Cooper; Vann Bennett; Peter J. Mohler; Matthew N. Rasband

Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS.


Progress in Brain Research | 2014

Neural ECM molecules in axonal and synaptic homeostatic plasticity.

Renato Frischknecht; Kae-Jiun Chang; Matthew N. Rasband; Constanze I. Seidenbecher

Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.


The Journal of Neuroscience | 2010

Oligodendrocyte Myelin Glycoprotein Does Not Influence Node of Ranvier Structure or Assembly

Kae-Jiun Chang; Keiichiro Susuki; María T. Dours-Zimmermann; Dieter R. Zimmermann; Matthew N. Rasband

Oligodendrocyte myelin glycoprotein (OMgp) is expressed by both neurons and oligodendrocytes in the CNS. It has been implicated in growth cone collapse and neurite outgrowth inhibition by signaling through the Nogo receptor and paired Ig-like receptor B (PirB). OMgp was also reported to be an extracellular matrix (ECM) protein surrounding CNS nodes of Ranvier and proposed to function as (1) an inhibitor of nodal collateral sprouting and (2) an important contributor to proper nodal and paranodal architecture. However, we show here that the anti-OMgp antiserum used in previous studies to define the functions of OMgp at nodes is not specific. Among all reported nodal ECM components, the antiserum exhibited strong cross-reactivity against versican V2 isoform, a chondroitin sulfate proteoglycan. Furthermore, the OMgp antiserum labeled OMgp-null nodes, but not nodes from versican V2-deficient mice, and preadsorption of the OMgp antiserum with recombinant versican V2 blocked nodal labeling. Analysis of CNS nodes in OMgp-null mice failed to reveal any nodal or paranodal defects, or increased nodal collateral sprouting, indicating that OMgp does not participate in CNS node of Ranvier assembly or maintenance. We successfully identified a highly specific anti-OMgp antibody and observed OMgp staining in white matter only after initiation of myelination. OMgp immunoreactivity decorated the surface of mature myelinated axons, but was excluded from compact myelin and nodes. Together, our results strongly argue against the nodal localization of OMgp and its proposed functions at nodes, and reveal OMgps authentic localization relative to nodes and myelin.


The Journal of Neuroscience | 2015

The Polarity Protein Pals1 Regulates Radial Sorting of Axons

Daniel R. Zollinger; Kae-Jiun Chang; Kelli Baalman; Seonhee Kim; Matthew N. Rasband

Myelin is essential for rapid and efficient action potential propagation in vertebrates. However, the molecular mechanisms regulating myelination remain incompletely characterized. For example, even before myelination begins in the PNS, Schwann cells must radially sort axons to form 1:1 associations. Schwann cells then ensheathe and wrap axons, and establish polarized, subcellular domains, including apical and basolateral domains, paranodes, and Schmidt-Lanterman incisures. Intriguingly, polarity proteins, such as Pals1/Mpp5, are highly enriched in some of these domains, suggesting that they may regulate the polarity of Schwann cells and myelination. To test this, we generated mice with Schwann cells and oligodendrocytes that lack Pals1. During early development of the PNS, Pals1-deficient mice had impaired radial sorting of axons, delayed myelination, and reduced nerve conduction velocities. Although myelination and conduction velocities eventually recovered, polyaxonal myelination remained a prominent feature of adult Pals1-deficient nerves. Despite the enrichment of Pals1 at paranodes and incisures of control mice, nodes of Ranvier and paranodes were unaffected in Pals1-deficient mice, although we measured a significant increase in the number of incisures. As in other polarized cells, we found that Pals1 interacts with Par3 and loss of Pals1 reduced levels of Par3 in Schwann cells. In the CNS, loss of Pals1 affected neither myelination nor the establishment of polarized membrane domains. These results demonstrate that Schwann cells and oligodendrocytes use distinct mechanisms to control their polarity, and that radial sorting in the PNS is a key polarization event that requires Pals1. SIGNIFICANCE STATEMENT This paper reveals the role of the canonical polarity protein Pals1 in radial sorting of axons by Schwann cells. Radial sorting is essential for efficient and proper myelination and is disrupted in some types of congenital muscular dystrophy.


The Journal of Neuroscience | 2018

Glial βII spectrin contributes to paranode formation and maintenance

Keiichiro Susuki; Daniel R. Zollinger; Kae-Jiun Chang; Chuansheng Zhang; Claire Yu-Mei Huang; Chang-Ru Tsai; Mauricio R. Galiano; Yanhong Liu; Savannah D. Benusa; Leonid M. Yermakov; Ryan B. Griggs; Jeffrey L. Dupree; Matthew N. Rasband

Action potential conduction along myelinated axons depends on high densities of voltage-gated Na+ channels at the nodes of Ranvier. Flanking each node, paranodal junctions (paranodes) are formed between axons and Schwann cells in the peripheral nervous system (PNS) or oligodendrocytes in the CNS. Paranodal junctions contribute to both node assembly and maintenance. Despite their importance, the molecular mechanisms responsible for paranode assembly and maintenance remain poorly understood. βII spectrin is expressed in diverse cells and is an essential part of the submembranous cytoskeleton. Here, we show that Schwann cell βII spectrin is highly enriched at paranodes. To elucidate the roles of glial βII spectrin, we generated mutant mice lacking βII spectrin in myelinating glial cells by crossing mice with a floxed allele of Sptbn1 with Cnp-Cre mice, and analyzed both male and female mice. Juvenile (4 weeks) and middle-aged (60 weeks) mutant mice showed reduced grip strength and sciatic nerve conduction slowing, whereas no phenotype was observed between 8 and 24 weeks of age. Consistent with these findings, immunofluorescence microscopy revealed disorganized paranodes in the PNS and CNS of both postnatal day 13 and middle-aged mutant mice, but not in young adult mutant mice. Electron microscopy confirmed partial loss of transverse bands at the paranodal axoglial junction in the middle-aged mutant mice in both the PNS and CNS. These findings demonstrate that a spectrin-based cytoskeleton in myelinating glia contributes to formation and maintenance of paranodal junctions. SIGNIFICANCE STATEMENT Myelinating glia form paranodal axoglial junctions that flank both sides of the nodes of Ranvier. These junctions contribute to node formation and maintenance and are essential for proper nervous system function. We found that a submembranous spectrin cytoskeleton is highly enriched at paranodes in Schwann cells. Ablation of βII spectrin in myelinating glial cells disrupted the paranodal cell adhesion complex in both peripheral and CNSs, resulting in muscle weakness and sciatic nerve conduction slowing in juvenile and middle-aged mice. Our data show that a spectrin-based submembranous cytoskeleton in myelinating glia plays important roles in paranode formation and maintenance.


Current Topics in Membranes | 2013

Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier.

Kae-Jiun Chang; Matthew N. Rasband


Bio-protocol | 2014

Cell Surface Protein-protein Binding on COS-7 Cells.

Kae-Jiun Chang; Matthew N. Rasband

Collaboration


Dive into the Kae-Jiun Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tammy Szu-Yu Ho

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chuansheng Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Edward C. Cooper

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge