Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Rodriquez is active.

Publication


Featured researches published by Daniel Rodriquez.


Energy and Environmental Science | 2015

Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants

Suchol Savagatrup; Adam D. Printz; Timothy F. O'Connor; Aliaksandr V. Zaretski; Daniel Rodriquez; Eric J. Sawyer; Kirtana M. Rajan; Raziel I. Acosta; Samuel E. Root; Darren J. Lipomi

The mechanical properties of organic semiconductors and the mechanical failure mechanisms of devices play critical roles in the yield of modules in roll-to-roll manufacturing and the operational stability of organic solar cells (OSCs) in portable and outdoor applications. This paper begins by reviewing the mechanical properties—principally stiffness and brittleness—of pure films of organic semiconductors. It identifies several determinants of the mechanical properties, including molecular structures, polymorphism, and microstructure and texture. Next, a discussion of the mechanical properties of polymer–fullerene bulk heterojunction blends reveals the strong influence of the size and purity of the fullerenes, the effect of processing additives as plasticizers, and the details of molecular mixing—i.e., the extent of intercalation of fullerene molecules between the side chains of the polymer. Mechanical strain in principle affects the photovoltaic output of devices in several ways, from strain-evolved changes in alignment of chains, degree of crystallinity, and orientation of texture, to debonding, cohesive failure, and cracking, which dominate changes in the high-strain regime. These conclusions highlight the importance of mechanical properties and mechanical effects on the viability of OSCs during manufacture and in operational environments. The review—whose focus is on molecular and microstructural determinants of mechanical properties—concludes by suggesting several potential routes to maximize both mechanical resilience and photovoltaic performance for improving the lifetime of devices in the near term and enabling devices that require extreme deformation (i.e., stretchability and ultra-flexibility) in the future.


ACS Applied Materials & Interfaces | 2017

Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics

Daniel Rodriquez; Jae-Han Kim; Samuel E. Root; Zhuping Fei; Pierre Boufflet; Martin Heeney; Taek-Soo Kim; Darren J. Lipomi

This paper describes a comparison of two characterization techniques for determining the mechanical properties of thin-film organic semiconductors for applications in soft electronics. In the first method, the film is supported by water (film-on-water, FOW), and a stress-strain curve is obtained using a direct tensile test. In the second method, the film is supported by an elastomer (film-on-elastomer, FOE), and is subjected to three tests to reconstruct the key features of the stress-strain curve: the buckling test (tensile modulus), the onset of buckling (yield point), and the crack-onset strain (strain at fracture). The specimens used for the comparison are four poly(3-hexylthiophene) (P3HT) samples of increasing molecular weight (Mn = 15, 40, 63, and 80 kDa). The methods produced qualitatively similar results for mechanical properties including the tensile modulus, the yield point, and the strain at fracture. The agreement was not quantitative because of differences in mode of loading (tension vs compression), strain rate, and processing between the two methods. Experimental results are corroborated by coarse-grained molecular dynamics simulations, which lead to the conclusion that in low molecular weight samples (Mn = 15 kDa), fracture occurs by chain pullout. Conversely, in high molecular weight samples (Mn > 25 kDa), entanglements concentrate the stress to few chains; this concentration is consistent with chain scission as the dominant mode of fracture. Our results provide a basis for comparing mechanical properties that have been measured by these two techniques, and provide mechanistic insight into fracture modes in this class of materials.


Materials horizons | 2018

Human ability to discriminate surface chemistry by touch

Cody W. Carpenter; Charles Dhong; Nicholas B. Root; Daniel Rodriquez; Emily E. Abdo; Kyle Skelil; Mohammad A. Alkhadra; Julian Ramírez; Darren J. Lipomi

The sense of touch is mediated by the interaction of a soft material (i.e., skin) with the texture and chemistry of an objects surface. Previous work designed to probe the limits of tactile perception has been limited to materials with surface asperities larger than the molecular scale; such materials may also have different bulk properties. We demonstrate in a series of psychophysical experiments that humans can discriminate surfaces that differ by only a single layer of molecules, and can “read” patterns of hydrophobicity in the form of characters in the ASCII alphabet. We design an apparatus that mimics free exploration of surfaces by humans and corroborate the experimental results with a theoretical model of friction that predicts the velocities and pressures that permit discrimination. These results demonstrate that forces produced, while sliding a finger along surfaces, interact with the mechanoreceptors of the skin to allow the brain to discriminate surfaces that differ only by surface chemistry. While we used intentionally simple surface modifications in this study (silanized vs. oxidized silicon), these experiments establish a precedent for using the techniques of materials chemistry in psychology. They also open the door for the use of more sophisticated, molecularly engineered, materials in the future.


Polymer Chemistry | 2018

Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers

Fumitaka Sugiyama; Andrew T. Kleinschmidt; Laure V. Kayser; Daniel Rodriquez; Mickey Finn; Mohammad A. Alkhadra; Jeremy M.-H. Wan; Julian Ramírez; Andrew S.-C. Chiang; Samuel E. Root; Suchol Savagatrup; Darren J. Lipomi

This paper describes effects of the flexibility, length, and branching of side chains on the mechanical properties of low-bandgap semiconducting polymers. The backbones of the polymer chains comprise a diketopyrrolopyrrole (DPP) motif flanked by two furan rings and copolymerized by Stille polycondensation with thiophene (DPP2FT). The side chains of the DPP fall into three categories: linear alkyl (C8, C14, or C16), branched alkyl (ethylhexyl, EH, or hexyldecyl, HD), and linear oligo(ethylene oxide) (EO3, EO4, or EO5). Polymers bearing C8 and C14 side chains are obtained in low yields and thus not pursued. Thermal, mechanical, and electronic properties are plotted against the number of carbon and oxygen atoms in the side chain. We obtain consistent trends in the thermal and mechanical properties for branched alkyl and linear oligo(ethylene oxide) side chains. For example, the glass transition temperature (T g) and elastic modulus decrease with increasing number of carbon and oxygen atoms, whereas the crack-onset strain increases. Among polymers with side chains of 16 carbon and oxygen atoms (C16, HD, and EO5), C16 exhibits the highest T g and the greatest susceptibility to fracture. Hole mobility, as measured in thin-film transistors, appears to be a poor predictor of electronic performance for polymers blended with [60]PCBM in bulk heterojunction (BHJ) solar cells. For example, while EO3 and EO4 exhibit the lowest mobilities (< 10-2 cm2 V-1 s-1) in thin-film transistors, solar cells made using these materials performed the best (efficiency > 2.6%) in unoptimized devices. Conversely, C16 exhibits the highest mobility (≈ 0.2 cm2 V-1 s-1) but produces poor solar cells (efficiency < 0.01%). We attribute the lack of correlation between mobility and power conversion efficiency to unfavorable morphology in the BHJ solar cells. Given the desirable properties measured for EO3 and EO4, the use of flexible oligo(ethylene oxide) side chains is a successful strategy to impart mechanical deformability to organic solar cells, without sacrificing electronic performance.


Macromolecules | 2018

Stretchable and Degradable Semiconducting Block Copolymers

Fumitaka Sugiyama; Andrew T. Kleinschmidt; Laure V. Kayser; Mohammad A. Alkhadra; Jeremy M.-H. Wan; Andrew S.-C. Chiang; Daniel Rodriquez; Samuel E. Root; Suchol Savagatrup; Darren J. Lipomi

This paper describes the synthesis and characterization of a class of highly stretchable and degradable semiconducting polymers. These materials are multi-block copolymers (BCPs) in which the semiconducting blocks are based on the diketopyrrolopyrrole (DPP) unit flanked by furan rings and the insulating blocks are poly(ε-caprolactone) (PCL). The combination of stiff conjugated segments with flexible aliphatic polyesters produces materials that can be stretched >100%. Remarkably, BCPs containing up to 90 wt% of insulating PCL have the same field-effect mobility as the pure semiconductor. Spectroscopic (ultraviolet-visible absorption) and morphological (atomic force microscopic) evidence suggests that the semiconducting blocks form aggregated and percolated structures with increasing content of the insulating PCL. Both PDPP and PCL segments in the BCPs degrade under simulated physiological conditions. Such materials could find use in wearable, implantable, and disposable electronic devices.


Chemistry of Materials | 2018

RAFT Polymerization of an Intrinsically Stretchable Water-Soluble Block Copolymer Scaffold for PEDOT

Laure V. Kayser; Madeleine D. Russell; Daniel Rodriquez; Sami N. Abuhamdieh; Charles Dhong; Salik Khan; Alexander N. Stein; Julian Ramírez; Darren J. Lipomi

Despite the common association of π-conjugated polymers with flexible and stretchable electronics, these materials can be rigid and brittle unless they are designed otherwise. For example, low modulus, high extensibility, and high toughness are treated as prerequisites for integration with soft and biological structures. One of the most successful and commercially available organic electronic materials is the conductive and brittle polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). To make this material stretchable, additives such as ionic liquids must be used. These additives may render the composite incompatible with biological tissue. In this work, we describe the synthesis of an intrinsically stretchable variant of the conductive polymer PEDOT:PSS that is free of additives. The approach involves the synthesis of a block copolymer comprising soft segments of poly(polyethylene glycol methyl ether acrylate) (PPEGMEA) and hard segments of poly(styrene sulfonate) (PSS) using a reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, we used the newly synthesized ionic elastomer PSS-b-PPEGMEA as a matrix for the oxidative polymerization of EDOT. The resulting polyelectrolyte elastomer, PEDOT:PSS-b-PPEGMEA, can withstand elongations up to 128% and has a toughness up to 10.1 MJ m-3. While the polyelectrolyte elastomer is not as conductive as the commercial material, the toughness and extensibility are each more than an order of magnitude higher. Moreover, the electrical conductivity of the polyelectrolyte elastomer exhibits minimal decrease with strain within the elastic regime. We then compared the block copolymer to physical blends of PEDOT:PSS and PPEGMEA. The blend material had a much lower failure strain of only 38% and a maximum toughness of 4.9 MJ m-3. This approach thus emphasizes the importance of the covalent linking of the PSS and PPEGMEA blocks. Furthermore, we demonstrate that the conductivity of scratched films can be restored upon exposure to water.


ACS Omega | 2018

Ionotactile Stimulation: Nonvolatile Ionic Gels for Human–Machine Interfaces

Samuel E. Root; Cody W. Carpenter; Laure V. Kayser; Daniel Rodriquez; Daniel M. Davies; Shen Wang; Siew Ting Melissa Tan; Ying Shirley Meng; Darren J. Lipomi

We report the application of a nonvolatile ionic gel as a soft, conductive interface for electrotactile stimulation. Materials characterization reveals that, compared to a conventional ionic hydrogel, a glycerol-containing ionic gel does not dry out in air, has better adhesion to skin, and exhibits a similar impedance spectrum in the range of physiological frequencies. Moreover, psychophysical experiments reveal that the nonvolatile gel also exhibits a wider window of comfortable electrotactile stimulation. Finally, a simple pixelated device is fabricated to demonstrate spatial resolution of the haptic signal.


ACS Nano | 2018

Metallic Nanoislands on Graphene for Monitoring Swallowing Activity in Head and Neck Cancer Patients

Julian Ramírez; Daniel Rodriquez; Fang Qiao; Julian Warchall; Jasmine Rye; Eden Aklile; Andrew S.-C. Chiang; Brandon C. Marin; Patrick P. Mercier; Chung-Kuan Cheng; Katherine A. Hutcheson; Eileen H. Shinn; Darren J. Lipomi

There is a need to monitor patients with cancer of the head and neck postradiation therapy, as diminished swallowing activity can result in disuse atrophy and fibrosis of the swallowing muscles. This paper describes a flexible strain sensor comprising palladium nanoislands on single-layer graphene. These piezoresistive sensors were tested on 14 disease-free head and neck cancer patients with various levels of swallowing function: from nondysphagic to severely dysphagic. The patch-like devices detected differences in (1) the consistencies of food boluses when swallowed and (2) dysphagic and nondysphagic swallows. When surface electromyography (sEMG) is obtained simultaneously with strain data, it is also possible to differentiate swallowing vs nonswallowing events. The plots of resistance vs time are correlated to specific events recorded by video X-ray fluoroscopy. Finally, we developed a machine-learning algorithm to automate the identification of bolus type being swallowed by a healthy subject (86.4%. accuracy). The algorithm was also able to discriminate between swallows of the same bolus from either the healthy subject or a dysphagic patient (94.7% accuracy). Taken together, these results may lead to noninvasive and home-based systems for monitoring of swallowing function and improved quality of life.


Macromolecules | 2014

Best of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elasticity

Suchol Savagatrup; Adam D. Printz; Daniel Rodriquez; Darren J. Lipomi


Chemical Reviews | 2017

Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics

Samuel E. Root; Suchol Savagatrup; Adam D. Printz; Daniel Rodriquez; Darren J. Lipomi

Collaboration


Dive into the Daniel Rodriquez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel E. Root

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam D. Printz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge