Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Schachner is active.

Publication


Featured researches published by Daniel Schachner.


Free Radical Biology and Medicine | 2009

NADPH oxidases 1 and 4 mediate cellular senescence induced by resveratrol in human endothelial cells.

Yvonne D.C. Schilder; Elke H. Heiss; Daniel Schachner; Jürgen Ziegler; Gottfried Reznicek; Dan Sorescu; Verena M. Dirsch

Resveratrol is believed to be partially responsible for the French paradox--the low risk of cardiovascular disease despite a high-fat diet in the French population. Recently, resveratrol has also been discussed as a life-span booster in several organisms. Age-related diseases are associated on the cellular level with senescence. We, therefore, hypothesized that resveratrol is vasoprotective by counteracting endothelial cell senescence. Surprisingly, we observed that chronic treatment with resveratrol (10 microM) was prosenescent in primary human endothelial cells. Resveratrol induced elevated reactive oxygen species (ROS) levels that were associated with and causally linked to an accumulation of cells in the S phase of the cell cycle, as measured by flow cytometry. We further show that cell accumulation in S phase leads to increased ROS and finally senescence. Using an siRNA approach, we clearly identified two NADPH oxidases, Nox1 and Nox4, as major targets of resveratrol and primary sources of ROS that act upstream of the observed S-phase accumulation.


Journal of Biological Chemistry | 2009

Active NF-E2-related Factor (Nrf2) Contributes to Keep Endothelial NO Synthase (eNOS) in the Coupled State ROLE OF REACTIVE OXYGEN SPECIES (ROS), eNOS, AND HEME OXYGENASE (HO-1) LEVELS

Elke H. Heiss; Daniel Schachner; Ernst R. Werner; Verena M. Dirsch

The aim of our study was to examine in detail the impact of NF-E2-related factor (Nrf2) activation on endothelial cell function with focus on redox homeostasis and the endothelial nitric oxide synthase (eNOS) system. We administered 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-IM), a known activator of Nrf2, to primary human umbilical vein endothelial cells. Activation of Nrf2 by CDDO-IM increased the amount of bioavailable nitric oxide (NO), a major contributor to vascular homeostasis, in naive and stressed cells. Concomitantly, intracellular reactive oxygen species were dose-and time-dependently reduced. In apparent contrast to elevated NO levels, eNOS protein expression was transiently decreased in an Nrf2-dependent manner. Employing pharmacological inhibitors as well as a small interfering RNA approach, we identified de novo protein synthesis of heme oxygenase 1 (HO-1) and its enzymatic activity as cause for the observed reduction of eNOS. We hypothesize that under redox stress, when the availability of tetrahydrobiopterin, a pivotal stoichiometric cofactor for eNOS, is limited, activation of Nrf2 leads (a) to transient reduction of eNOS protein levels and (b) to an antioxidant defense in human umbilical vein endothelial cells. Both activities ensure that a stoichiometric ratio of eNOS and tetrahydrobiopterin is sustained and that the risk of eNOS uncoupling is reduced. Our study is the first to provide a causal link between Nrf2 activation and eNOS expression and NO levels, respectively.


Redox biology | 2013

Glucose availability is a decisive factor for Nrf2-mediated gene expression

Elke H. Heiss; Daniel Schachner; Kristin Zimmermann; Verena M. Dirsch

Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Indirubin-3′-Monoxime Blocks Vascular Smooth Muscle Cell Proliferation by Inhibition of Signal Transducer and Activator of Transcription 3 Signaling and Reduces Neointima Formation In Vivo

Andrea V. Schwaiberger; Elke H. Heiss; Muris Cabaravdic; Tina Oberan; Jan Zaujec; Daniel Schachner; Pavel Uhrin; Atanas G. Atanasov; Johannes M. Breuss; Bernd R. Binder; Verena M. Dirsch

Objective—Our goal was to examine the influence of indirubin-3′-monoxime (I3MO), a natural product–derived cyclin-dependent kinase inhibitor, on vascular smooth muscle cell (VSMC) proliferation in vitro, experimentally induced neointima formation in vivo, and related cell signaling pathways. Methods and Results—I3MO dose-dependently inhibited platelet-derived growth factor (PDGF)–BB-induced VSMC proliferation by arresting cells in the G0/G1 phase of the cell cycle as assessed by 5-bromo-2′-deoxyuridine incorporation and flow cytometry. PDGF-induced activation of the kinases Akt, Erk1/2, and p38MAPK was not affected. In contrast, I3MO specifically blocked PDGF-, interferon-&ggr;-, and thrombin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Human endothelial cells (EA.hy926) responded to I3MO with increased endothelial nitric oxide synthase activity as assessed via [14C]l-arginine/[14C]l-citrulline conversion. The specific STAT3 inhibitor Stattic led to decreased VSMC proliferation, and transient expression of a constitutively active form of STAT3 overcame the I3MO-induced cell cycle arrest in mouse embryonic fibroblasts. In a murine femoral artery cuff model, I3MO prevented neointima formation while reducing STAT3 phosphorylation and the amount of proliferating Ki67-positive cells. Conclusion—I3MO represses PDGF- and thrombin-induced VSMC proliferation and, in vivo, neointima formation, likely because it specifically blocks STAT3 signaling. This profile and its positive effect on endothelial NO production turns I3MO into a promising lead compound to prevent restenosis.


British Journal of Pharmacology | 2014

Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo.

Nanang Fakhrudin; Birgit Waltenberger; M Cabaravdic; Atanas G. Atanasov; Clemens Malainer; Daniel Schachner; Elke H. Heiss; Rongxia Liu; Stefan M. Noha; Anna M. Grzywacz; Judit Mihaly-Bison; E M Awad; Daniela Schuster; Johannes M. Breuss; Judith M. Rollinger; Valery N. Bochkov; Hermann Stuppner; Verena M. Dirsch

The transcription factor NF‐κB orchestrates many pro‐inflammatory signals and its inhibition is considered a promising strategy to combat inflammation. Here we report the characterization of the natural product plumericin as a highly potent inhibitor of the NF‐κB pathway with a novel chemical scaffold, which was isolated via a bioactivity‐guided approach, from extracts of Himatanthus sucuuba, an Amazonian plant traditionally used to treat inflammation‐related disorders.


Free Radical Biology and Medicine | 2012

Ascorbate stimulates endothelial nitric oxide synthase enzyme activity by rapid modulation of its phosphorylation status.

Angela Ladurner; Christoph A. Schmitt; Daniel Schachner; Atanas G. Atanasov; Ernst R. Werner; Verena M. Dirsch; Elke H. Heiss

Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine–citrulline conversion assay and HPLC analysis, respectively. Over a period of 4 h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.


Journal of Natural Products | 2011

Caffeic acid phenethyl ester inhibits PDGF-induced proliferation of vascular smooth muscle cells via activation of p38 MAPK, HIF-1α, and heme oxygenase-1.

Thomas U. Roos; Elke H. Heiss; Andrea V. Schwaiberger; Daniel Schachner; Irene Sroka; Tina Oberan; Angelika M. Vollmar; Verena M. Dirsch

Hyperproliferation of vascular smooth muscle cells (VSMCs) is critically involved in the onset of atherosclerosis and restenosis. Although caffeic acid phenethyl ester (CAPE, 1), one of the main constituents of honeybee propolis, has been shown to exert a beneficial effect in models of vascular injury in vivo, detailed mechanistic investigations in vascular cells are scarce. This study has examined the antiproliferative activity of 1 in platelet-derived growth factor (PDGF)-stimulated primary rat aortic VSMCs and aimed to shed light on underlying molecular mechanisms. Compound 1 inhibited the proliferation of VSMCs upon exposure to PDGF in a dose-dependent manner by interfering with cell cycle progression from the G0/1- to the S-phase. Enhanced phosphorylation of p38 mitogen-activated protein kinase (MAPK) as well as stabilization of hypoxia-inducible factor (HIF)-1α and subsequent induction of heme oxygenase-1 (HO-1) could be identified as molecular events contributing to the observed growth arrest in PDGF-activated VSMCs upon exposure to 1.


Cardiovascular Research | 2011

Resveratrol blocks Akt activation in angiotensin II- or EGF-stimulated vascular smooth muscle cells in a redox-independent manner

Cornelia E. Schreiner; Mario Kumerz; Julia Gesslbauer; Daniel Schachner; Helge Joa; Thomas Erker; Atanas G. Atanasov; Elke H. Heiss; Verena M. Dirsch

Aims Resveratrol (RV), an antioxidant, inhibits angiotensin II (Ang II)-induced hypertrophy and Ang II- or epidermal growth factor (EGF)-induced Akt phosphorylation in rat vascular smooth muscle cells (VSMCs). Both signalling pathways are reported to utilize reactive oxygen species (ROS). The aim of this study was to show whether RV reduces the ROS level in Ang II- or EGF-activated VSMCs and whether reduction of ROS causes the impeded signalling towards Akt in the presence of RV. Methods and results We show here that RV reduces intracellular ROS and extracellular H2O2 release from VSMCs as measured using 2′,7′-dichlorodihydrofluorescein-diacetate and Amplex Red™. Since NADPH oxidases (Nox) 1 and 4 are major ROS sources in VSMCs, we examined their need for Akt phosphorylation in response to Ang II or EGF. Experiments using the blocking peptide gp91ds-tat verified a role for Nox1 in Ang II signalling towards Akt, but excluded a role for Nox1 in the respective EGF signalling. A small interfering RNA-mediated knock-down of Nox4 showed that Nox4 was not required for Ang II- or EGF-induced Akt phosphorylation. Use of the flavoprotein inhibitor diphenyleneiodonium, N-acetyl-cysteine, and non-antioxidant RV derivatives revealed that the antioxidant capacity of RV is not required for the inhibition of Akt phosphorylation, in both rat and human VSMCs. Conclusion Thus, although RV acts as an antioxidant, the antihypertrophic response of RV in VSMCs and the signalling downstream of the EGF receptor towards Akt seem to be largely redox independent.


Molecular Nutrition & Food Research | 2011

Resveratrol inhibits migration and Rac1 activation in EGF- but not PDGF-activated vascular smooth muscle cells

Mario Kumerz; Elke H. Heiss; Daniel Schachner; Atanas G. Atanasov; Verena M. Dirsch

Abstract Scope: Migration of vascular smooth muscle cells (VSMC) reflects one of the initial steps in atherosclerosis. Resveratrol (RV) is suggested to mediate putative vasoprotective properties of red wine leading to the hypothesis that RV interferes with growth factor-induced migration of VSMC. Methods and results: We show here that RV (50 μM) strongly reduces epidermal growth factor (EGF)- but not platelet-derived growth factor (PDGF)-induced VSMC migration using the wound-healing technique. Accordingly, RV inhibited Rac1 activation and lamellipodia formation in response to EGF but not PDGF as shown by pull-down assays and fluorescence microscopy after actin staining with phalloidin-FITC, respectively. Since Src-family kinases and the phosphatidylinositol-3 kinase (PI3K) are reported to be crucial upstream mediators of Rac1 activation we examined the PI3K inhibitor wortmannin and the src kinase inhibitor SU6656 side-by-side with RV for their anti-migratory potential. Whereas src inhibition abrogated both EGF- and PDGF-triggered migration, wortmannin, like RV, was more effective in EGF- than PDGF-activated cells, suggesting that PI3K inhibition, previously shown for RV in growth factor-activated VSMC, contributes to the anti-migratory effect of RV in EGF-stimulated VSMC. Conclusion: This study is the first to discover an anti-migratory potential of RV in EGF-activated VSMC that is most likely mediated via Rac1 inhibition.


Journal of Biological Chemistry | 2013

12/15-Lipoxygenase contributes to Platelet-Derived Growth Factor- Induced Activation of Signal Transducer and Activator of Transcription 3

Tina Blažević; Andrea V. Schwaiberger; Cornelia E. Schreiner; Daniel Schachner; Anja M. Schaible; Christoph S. Grojer; Atanas G. Atanasov; Oliver Werz; Verena M. Dirsch; Elke H. Heiss

Background: The small molecule indirubin-3′-monoxime (I3MO) inhibits activation of STAT3 in vascular smooth muscle cells, with an unresolved mechanism. Results: Activation of 12/15-lipoxygenase (LO) is crucial for PDGF-induced Src and STAT3 activation and is impaired by I3MO. Conclusion: I3MO interferes with PDGFR-Src-STAT3 signaling via impaired 12/15-LO activation. Significance: 12/15-LO is an important signaling hub within the PDGF-STAT3 pathway. We showed previously that the small molecule indirubin-3′-monoxime (I3MO) prevents vascular smooth muscle cell (VSMC) proliferation by selectively inhibiting signal transducer and activator of transcription 3 (STAT3). Looking for the underlying upstream molecular mechanism, we here reveal the important role of reactive oxygen species (ROS) for PDGF-induced STAT3 activation in VSMC. We show that neither NADPH-dependent oxidases (Noxes) nor mitochondria, but rather 12/15-lipoxygenase (12/15-LO) are pivotal ROS sources involved in the redox-regulated signal transduction from PDGFR to STAT3. Accordingly, pharmacological and genetic interference with 12/15-LO activity selectively inhibited PDGF-induced Src activation and STAT3 phosphorylation. I3MO is able to blunt PDGF-induced ROS and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) production, indicating an inhibitory action of I3MO on 12/15-LO and consequently on STAT3. We identify 12/15-LO as a hitherto unrecognized signaling hub in PDGF-triggered STAT3 activation and show for the first time a negative impact of I3MO on 12/15-LO.

Collaboration


Dive into the Daniel Schachner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes M. Breuss

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Uhrin

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge