Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Verena M. Dirsch is active.

Publication


Featured researches published by Verena M. Dirsch.


Circulation | 2002

Red Wine Polyphenols Enhance Endothelial Nitric Oxide Synthase Expression and Subsequent Nitric Oxide Release From Endothelial Cells

Jürgen F. Leikert; Thomas R Räthel; Paulus Wohlfart; Véronique Cheynier; Angelika M. Vollmar; Verena M. Dirsch

Background—Population-based studies suggest a reduced incidence of morbidity and mortality from coronary heart disease caused by moderate and regular consumption of red wine. Endothelial nitric oxide (NO) is a pivotal vasoprotective molecule. This study examines the influence of red wine polyphenols on the regulation of endothelial nitric oxide synthase (eNOS) expression and subsequent NO synthesis, focusing on the putative long-lasting antiatherosclerotic effects of red wine. Methods and Results—Treatment (20 hours) of human umbilical vein endothelial cells (HUVECs) and of the HUVEC-derived cell line EA.hy926 with a alcohol-free red wine polyphenol extract (RWPE) led to a concentration-dependent (100 to 600 &mgr;g/mL), significant increase in NO release (up to 3.0-fold/HUVEC and 2.0-fold/EA.hy926) as shown by use of the fluorescent probe DAF-2. This effect was corroborated by the [14C]l-arginine/l-citrulline conversion assay in intact EA.hy926 cells. RWPE (20 hours, 100 to 600 &mgr;g/mL) also significantly increased eNOS protein levels up to 2.1-fold. Furthermore, we found an increased human eNOS promotor activity (up to 2-fold) in response to red wine polyphenols (18 hours, 100 to 600 &mgr;g/mL), as demonstrated by a luciferase reporter gene assay. Conclusion—We provide conclusive data showing for the first time that a RWPE increases eNOS expression and subsequent endothelial NO release. Increased active eNOS levels may antagonize the development of endothelial dysfunction and atherosclerosis, a hypothesis that supports the view that red wine indeed may have long-term protective cardiovascular properties mediated by its polyphenols.


Biotechnology Advances | 2015

Discovery and resupply of pharmacologically active plant-derived natural products: A review.

Atanas G. Atanasov; Birgit Waltenberger; Eva-Maria Pferschy-Wenzig; Thomas Linder; Christoph Wawrosch; Pavel Uhrin; Veronika Temml; Limei Wang; Stefan Schwaiger; Elke H. Heiss; Judith M. Rollinger; Daniela Schuster; Johannes M. Breuss; Valery N. Bochkov; Marko D. Mihovilovic; Brigitte Kopp; Rudolf Bauer; Verena M. Dirsch; Hermann Stuppner

Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a “screening hit” through a “drug lead” to a “marketed drug” is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.


Biochemical Pharmacology | 2014

Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review.

Limei Wang; Birgit Waltenberger; Eva-Maria Pferschy-Wenzig; Martina Blunder; Xin Liu; Clemens Malainer; Tina Blazevic; Stefan Schwaiger; Judith M. Rollinger; Elke H. Heiss; Daniela Schuster; Brigitte Kopp; Rudolf Bauer; Hermann Stuppner; Verena M. Dirsch; Atanas G. Atanasov

Graphical abstract


European Journal of Pharmacology | 2008

Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis

Niraldo Paulino; Sheila Rago Lemos Abreu; Yoshihiro Uto; Daisuke Koyama; Hideko Nagasawa; Hitoshi Hori; Verena M. Dirsch; Angelika M. Vollmar; Amarilis Scremin; Walter A. Bretz

Artepillin C is the major compound in the Brazilian green propolis from Baccharis dracunculifolia. Our aim in this study was to investigate the anti-inflammatory effects, absorption, and bioavailability of Artepillin C in mice. The animals used were male Swiss mice subjected to: paw oedema by carrageenan (300 microg/paw), carrageenan-induced peritonitis, and prostaglandin E(2) determination. We also measured in vitro nitric oxide production by RAW 264.7 cells and NF-kappaB activity in HEK 293 cells. Finally, we measured the absorption and bioavailability of Artepillin C in plasma from mice by means of GC-MS after a single oral dose (10 mg/kg). In vivo, Artepillin C produced a maximal inhibition of 38% after 360 min on paw oedema. Artepillin C also decreased the number of neutrophils during peritonitis (IC(50): 0.9 (0.5-1.4) mg/kg). Treatment with Artepillin C decreased prostaglandin E(2) by 29+/-3% and 58+/-5% at 1 and 10 mg/kg, respectively, with a mean ID(50) of 8.5 (8.0-8.7) mg/kg). Similarly, in in vitro models, Artepillin C (3, 10, or 100 microM) decreased nitric oxide production by RAW 264.7 cells with a mean IC(50) of 8.5 (7.8-9.2) microM. In HEK 293 cells, Artepillin C reduced NF-kappaB activity with a mean IC(50) of 26 (22-30) mug/ml), suggesting anti-inflammatory activity, particularly during acute inflammation. Lastly, Artepillin C was absorbed after an oral dose (10 mg/kg) with maximal peaks found at 1 h (22 microg/ml). Collectively, Artepillin C showed anti-inflammatory effects mediated, at least in part, by prostaglandin E(2) and nitric oxide inhibition through NF-kappaB modulation, and exhibited bioavailability by oral administration.


Nitric Oxide | 2009

Modulation of endothelial nitric oxide by plant-derived products

Christoph A. Schmitt; Verena M. Dirsch

Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is recognised as a central anti-inflammatory and anti-atherogenic principle in the vasculature. Decreased availability of NO in the vasculature promotes the progression of cardiovascular diseases. Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, may improve vascular function by enhancing NO bioavailability. In this article we first outline common pathways modulating endothelial NO production or bioavailability to provide a basis for subsequent mechanistic discussions. Then we comprehensively review natural products and plant extracts known to positively influence eNOS activity and/or endothelial function in vitro or in vivo. We will discuss red wine, highlighting polyphenols, oligomeric procyanidins (OPC) and resveratrol as modulators of endothelial NO production. Other dietary products and their active components known to activate eNOS include cocoa (OPC and its monomer (-)-epicatechin), pomegranates (polyphenols), black and green tea (flavanoids, especially epigallocatechin gallate), olive oil (oleic acid and polyphenols), soy (genistein), and quercetin, one of the most abundant flavonoids in plants. In addition, phytomedical preparations made from ginkgo, hawthorn and ginseng, as well as formulations used in traditional Chinese Medicine, have been shown to affect endothelial NO production. Recurring phytochemical patterns among active fractions and purified compounds are discussed. In summary, there is increasing evidence that several single natural products and plant extracts influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of cardiovascular diseases.


Atherosclerosis | 1998

Effect of allicin and ajoene, two compounds of garlic, on inducible nitric oxide synthase

Verena M. Dirsch; Alexandra K. Kiemer; Hildebert Wagner; Angelika M. Vollmar

Inducible nitric oxide synthase (iNOS) has recently been shown to be present in human atherosclerotic lesions and to promote the formation of deleterious peroxynitrite. Allicin and ajoene are discussed as active compounds with regard to the beneficial effects of garlic in atherosclerosis. The aim of this study was to investigate the effect of allicin and ajoene on the iNOS system in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Ajoene (IC50 2.5-5 microM) and allicin (IC50 15-20 microM) dose dependently reduced nitrite accumulation, a parameter for NO synthesis, in supernatants of LPS-stimulated (1 microg/ml, 20 h) macrophages. Accordingly, reduced iNOS enzyme activities were measured by conversion of L-[3H]arginine to L-[3H]citrulline in homogenates of LPS-activated cells treated with ajoene or allicin. None of these compounds, however, showed a direct effect on the catalytic-activity of iNOS. Consequently, iNOS protein and mRNA expression in ajoene (10 microM) or allicin (50 microM) treated cells were evaluated by Western blot and Northern blot analysis, respectively. Markedly reduced iNOS protein as well as mRNA levels were demonstrated. These observations indicate that allicin and ajoene inhibit the expression of iNOS in activated macrophages. The possible link of this effect to the beneficial features attributed to garlic is discussed.


Journal of Biological Chemistry | 2007

Chronic Treatment with Resveratrol Induces Redox Stress- and Ataxia Telangiectasia-mutated (ATM)-dependent Senescence in p53-positive Cancer Cells

Elke H. Heiss; Yvonne D.C. Schilder; Verena M. Dirsch

The induction of senescence, an irreversible growth arrest, in cancer cells is regarded as a mean to halt tumor progression. The phytoalexin resveratrol (RV) is known to possess a variety of cancer-preventive, -therapeutic, and -chemosensitizing properties. We report here that chronic treatment with RV in a subapoptotic concentration induces senescence-like growth arrest in tumor cells. In contrast to the widely accepted antioxidant property of RV, we demonstrate that one causative stimulus for senescence induction by chronic RV is an increased level of reactive oxygen species (ROS). The ROS formed upon RV exposure include hydrogen peroxide and superoxide and originate largely from mitochondria. Consistently, co-incubation with the antioxidant N-acetyl cysteine interfered with RV-mediated reactivation of the senescence program. Molecular mediators on the way from increased ROS levels to the observed growth arrest include p38 MAPK, p53, and p21. Moreover, we provide evidence that RV-initiated replication stress, apparent by activation of the ataxia telangiectasia-mutated kinase pathway, is associated with increased ROS levels and senescence induction. This is the first report linking cell cycle effects with a pro-oxidant and pro-senescent effect of RV in cancer cells.


Journal of Ethnopharmacology | 2013

Ethnopharmacological in vitro studies on Austria's folk medicine—An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs

Sylvia Vogl; Paolo Picker; Judit Mihaly-Bison; Nanang Fakhrudin; Atanas G. Atanasov; Elke H. Heiss; Christoph Wawrosch; Gottfried Reznicek; Verena M. Dirsch; Johannes Saukel; Brigitte Kopp

Ethnopharmacological relevance In Austria, like in most Western countries, knowledge about traditional medicinal plants is becoming scarce. Searching the literature concerning Austrias ethnomedicine reveals its scant scientific exploration. Aiming to substantiate the potential of medicinal plants traditionally used in Austria, 63 plant species or genera with claimed anti-inflammatory properties listed in the VOLKSMED database were assessed for their in vitro anti-inflammatory activity. Material and methods 71 herbal drugs from 63 plant species or genera were extracted using solvents of varying polarities and subsequently depleted from the bulk constituents, chlorophylls and tannins to avoid possible interferences with the assays. The obtained 257 extracts were assessed for their in vitro anti-inflammatory activity. The expression of the inflammatory mediators E-selectin and interleukin-8 (IL-8), induced by the inflammatory stimuli tumor necrosis factor alpha (TNF-α) and the bacterial product lipopolysaccharide (LPS) was measured in endothelial cells. The potential of the extracts to activate the nuclear factors PPARα and PPARγ and to inhibit TNF-α-induced activation of the nuclear factor-kappa B (NF-κB) in HEK293 cells was determined by luciferase reporter gene assays. Results In total, extracts from 67 of the 71 assessed herbal drugs revealed anti-inflammatory activity in the applied in vitro test systems. Thereby, 30 could downregulate E-selectin or IL-8 gene expression, 28 were strong activators of PPARα or PPARγ (inducing activation of more than 2-fold at a concentration of 10 µg/mL) and 21 evoked a strong inhibition of NF-κB (inhibition of more than 80% at 10 µg/mL). Conclusion Our research supports the efficacy of herbal drugs reported in Austrian folk medicine used for ailments associated with inflammatory processes. Hence, an ethnopharmacological screening approach is a useful tool for the discovery of new drug leads.


FEBS Letters | 2001

Reliable in vitro measurement of nitric oxide released from endothelial cells using low concentrations of the fluorescent probe 4,5‐diaminofluorescein

Jürgen F. Leikert; Thomas R Räthel; Christian Müller; Angelika M. Vollmar; Verena M. Dirsch

4,5‐Diaminofluorescein (DAF‐2) and its membrane‐permeable derivate DAF‐2 diacetate are fluorescent probes that have been developed to perform real‐time biological detection of nitric oxide (NO). Their use for intracellular imaging, however, has recently been seriously questioned and data using DAF‐2 for extracellular NO detection at low levels, as for example released from endothelial cells, are rare. Here we show that a reliable detection of low levels of NO in biological systems by DAF‐2 is possible (a) by using low DAF‐2 concentrations (0.1 μM) and (b) by subtracting the DAF‐2 auto‐fluorescence from the measured total fluorescence. The described method allows easy real‐time detection of endothelial NO formation.


Biological Procedures Online | 2003

Application of 4,5-diaminofluorescein to reliably measure nitric oxide released from endothelial cells in vitro

Thomas R Räthel; Jürgen F. Leikert; Angelika M. Vollmar; Verena M. Dirsch

Here we describe in more depth the previously published application of the fluorescent probe 4,5-diaminofluorescein (DAF-2) in order to reliably measure low levels of nitric oxide (NO) as released from human endothelial cells invitro. The used approach is based on the following considerations a) use low concentrations of DAF-2 (0.1 µM) in order to reduce the contribution of DAF-2 auto-fluorescence to the measured total fluorescence, and b) subtract the DAF-2 auto-fluorescence from the measured total fluorescence. The advantage of this method is the reliable quantification of NO in a biological system in the nanomolar range once thoroughly validated. Here we focus in addition to the previous publication (Leikertet al.,FEBS Lett 2001, 506:131–134) on aspects of validation procedures as well as limitations and pitfalls of this method.

Collaboration


Dive into the Verena M. Dirsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge