Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Straume is active.

Publication


Featured researches published by Daniel Straume.


Peptides | 2009

An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum

Dzung B. Diep; Daniel Straume; Morten Kjos; Carmen Torres; Ingolf F. Nes

The pln locus responsible for bacteriocin biosynthesis in Lactobacillus plantarum C11 was first unraveled about 15 years ago and since then different strains of L. plantarum (NC8, WCFS1, J23 and J51) have been found to harbor mosaic pln loci in their genomes. Each locus is of 18-19kb and contains 22-25 genes organized into 5-6 operons. Together these strains produce four different class IIb two-peptide bacteriocins, plantaricins EF, JK, NC8 and J51 and a pheromone peptide plantaricin A with antimicrobial activity. Their production has been found to be regulated through a quorum-sensing based network consisting of a secreted peptide pheromone, a membrane-located sensor and one or two transcription regulators. The individual loci each contain a set of semi-conserved regulated promoters with subtle differences necessary for the regulators to regulate their promoter activity individually with respect to timing and strength. These subtle differences in the promoters are highly conserved across the different pln loci, in a functionally related manner. In this review we will discuss various aspects of these bacteriocin loci with special focus on their mosaic genetic composition, gene regulation and mode of action. We also present a novel pln locus containing a transposon of the MULE superfamily, a mobile element which has not been described in L. plantarum before.


Molecular Microbiology | 2010

Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide

Vegard Eldholm; Ola Johnsborg; Daniel Straume; Hilde Solheim Ohnstad; Kari Helene Berg; Juan A. Hermoso; Leiv Sigve Håvarstein

Pneumococci that are competent for natural genetic transformation express a number of proteins involved in binding, uptake, translocation and recombination of DNA. In addition, they attack and lyse non‐competent sister cells present in the same environment. This phenomenon has been termed fratricide. The key effector of pneumococcal fratricide is CbpD, a secreted protein encompassing an N‐terminal CHAP domain, two SH3b domains and a C‐terminal choline‐binding domain (CBD). CbpD is believed to degrade the cell wall of target cells, but experimental evidence supporting this hypothesis has been lacking. Here, we show that CbpD indeed has muralytic activity, and that this activity requires functional CBD and SH3b domains. To better understand the critical role played by the non‐catalytic C‐terminal region of CbpD, various translational fusions were constructed between the CBD and SH3b domains and green fluorescent protein (GFP). The results showed that the SH3b domains specifically recognize and bind peptidoglycan, while the CBD domain functions as a localization signal that directs CbpD to the septal region of the pneumococcal cell. Intriguingly, transmission electron microscopy analysis revealed that target cells attacked by CbpD ruptures at the septal region, in accordance with the binding specificity displayed by the CBD domain.


Journal of Bacteriology | 2013

Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6.

Kari Helene Berg; Gro Anita Stamsås; Daniel Straume; Leiv Sigve Håvarstein

Streptococcus pneumoniae produces two class B penicillin-binding proteins, PBP2x and PBP2b, both of which are essential. It is generally assumed that PBP2x is specifically involved in septum formation, while PBP2b is dedicated to peripheral cell wall synthesis. However, little experimental evidence exists to substantiate this belief. In the present study, we obtained evidence that strongly supports the view that PBP2b is essential for peripheral peptidoglycan synthesis. Depletion of PBP2b expression gave rise to long chains of cells in which individual cells were compressed in the direction of the long axis and looked lentil shaped. This morphological change is consistent with a role for pneumococcal PBP2b in the synthesis of the lateral cell wall. Depletion of PBP2x, on the other hand, resulted in lemon-shaped and some elongated cells with a thickened midcell region. Low PBP2b levels gave rise to changes in the peptidoglycan layer that made pneumococci sensitive to exogenously added LytA during logarithmic growth and refractory to chain dispersion upon addition of LytB. Interestingly, analysis of the cell wall composition of PBP2b-depleted pneumococci revealed that they had a larger proportion of branched stem peptides in their peptidoglycan than the corresponding undepleted cells. Furthermore, MurM-deficient mutants, i.e., mutants lacking the ability to synthesize branched muropeptides, were found to require much higher levels of PBP2b to sustain growth than those required by MurM-proficient strains. These findings might help to explain why increased incorporation of branched muropeptides is required for high-level beta-lactam resistance in S. pneumoniae.


Nature Communications | 2014

Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae

Sergio G. Bartual; Daniel Straume; Gro Anita Stamsås; Inés G. Muñoz; Carlos Alfonso; Martín Martínez-Ripoll; Leiv Sigve Håvarstein; Juan A. Hermoso

Separation of daughter cells during bacterial cell division requires splitting of the septal cross wall by peptidoglycan hydrolases. In Streptococcus pneumoniae, PcsB is predicted to perform this operation. Recent evidence shows that PcsB is recruited to the septum by the transmembrane FtsEX complex, and that this complex is required for cell division. However, PcsB lacks detectable catalytic activity in vitro, and while it has been proposed that FtsEX activates PcsB, evidence for this is lacking. Here we demonstrate that PcsB has muralytic activity, and report the crystal structure of full-length PcsB. The protein adopts a dimeric structure in which the V-shaped coiled-coil (CC) domain of each monomer acts as a pair of molecular tweezers locking the catalytic domain of each dimeric partner in an inactive configuration. This suggests that the release of the catalytic domains likely requires an ATP-driven conformational change in the FtsEX complex, conveyed towards the catalytic domains through coordinated movements of the CC domain.


Infection, Genetics and Evolution | 2015

Natural transformation and genome evolution in Streptococcus pneumoniae

Daniel Straume; Gro Anita Stamsås; Leiv Sigve Håvarstein

Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx that has the potential to cause severe infections such as pneumonia, bacteremia and meningitis. Despite considerable efforts to reduce the burden of pneumococcal disease, it continues to be a major public health problem. After the Second World War, antimicrobial therapy was introduced to fight pneumococcal infections, followed by the first effective vaccines more than half a century later. These clinical interventions generated a selection pressure that drove the evolution of vaccine-escape mutants and strains that were highly resistant against antibiotics. The remarkable ability of S. pneumoniae to acquire drug resistance and evade vaccine pressure is due to its recombination-mediated genetic plasticity. S. pneumoniae is competent for natural genetic transformation, a property that enables the pneumococcus to acquire new traits by taking up naked DNA from the environment and incorporating it into its genome through homologous recombination. In the present paper, we review current knowledge on pneumococcal transformation, and discuss how the pneumococcus uses this mechanism to adapt and survive under adverse and fluctuating conditions.


Molecular Genetics and Genomics | 2007

Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators

Daniel Straume; Morten Kjos; Ingolf F. Nes; Dzung B. Diep

Down-regulation of quorum-sensing based pathways is an important but yet poorly understood process in bacterial gene regulation. In this study, we show that the gene regulator plnC not only acts as an activator gene in the quorum-sensing based bacteriocin production in Lactobacillus plantarum C11, but it also concurrently codes for truncated forms that were shown to repress bacteriocin production. By amino acid N-terminal sequencing and DNA sequence analysis, the truncated species of PlnC are believed to be translated from alternative start codons located in the so-called receiver domain of the regulator. To analyse the structure–function relationship of truncated species of PlnC, we performed a series of systematic truncation mutations: ten in the receiver domain, one in the hinge region and two in the C-terminal DNA-binding domain. It was revealed that any truncation mutation containing a disrupted receiver domain together with an intact DNA-binding domain displayed a repressive effect on bacteriocin production. Such a gene repression mechanism mediated by truncated regulators was also found in two other quorum-sensing based bacteriocin systems (spp in L. sakei LTH673 and NC8-pln in L. plantarum NC8), suggesting that this mode of repression might represent a common means applied by bacteria to down-regulate certain quorum-sensing based pathways.


Journal of Bacteriology | 2011

Peptide-Regulated Gene Depletion System Developed for Use in Streptococcus pneumoniae

Kari Helene Berg; Truls Johan Biørnstad; Daniel Straume; Leiv Sigve Håvarstein

To facilitate the study of pneumococcal genes that are essential for viability or normal cell growth, we sought to develop a tightly regulated, titratable gene depletion system that interferes minimally with normal cellular functions. A possible candidate for such a system is the recently discovered signal transduction pathway regulating competence for natural transformation in Streptococcus thermophilus. This pathway, which is unrelated to the ComCDE pathway used for competence regulation in Streptococcus pneumoniae, has not been fully elucidated, but it is known to include a short unmodified signaling peptide, ComS*, an oligopeptide transport system, Ami, and a transcriptional activator, ComR. The transcriptional activator is thought to bind to an inverted repeat sequence termed the ECom box. We introduced the ComR protein and the ECom box into the genome of S. pneumoniae R6 and demonstrated that addition of synthetic ComS* peptide induced the transcription of a luciferase gene inserted downstream of the ECom box. To determine whether the ComRS system could be used for gene depletion studies, the licD1 gene was inserted behind the chromosomally located ECom box promoter by using the Janus cassette. Then, the native versions of licD1 and licD2 were deleted, and the resulting mutant was recovered in the presence of ComS*. Cultivation of the licD1 licD2 double mutant in the absence of ComS* gradually affected its ability to grow and propagate, demonstrating that the ComRS system functions as intended. In the present study, the ComRS system was developed for use in S. pneumoniae. In principle, however, it should work equally well in many other Gram-positive species.


BMC Biochemistry | 2009

DNA binding kinetics of two response regulators, PlnC and PlnD, from the bacteriocin regulon of Lactobacillus plantarum C11

Daniel Straume; Rune F. Johansen; Magnar Bjørås; Ingolf F. Nes; Dzung B. Diep

BackgroundBacteriocin production in the lactic acid bacterium Lactobacillus plantarum C11 is regulated through a quorum sensing based pathway involving two highly homologous response regulators (59% identity and 76% similarity), PlnC as a transcriptional activator and PlnD as a repressor. Previous in vitro studies have shown that both regulators bind, as homodimers, to the same DNA regulatory repeats to exert their regulatory functions. As the genes for these two proteins are located on the same auto-regulatory operon, hence being co-expressed upon gene activation, it is plausible that their opposite functions must somehow be differentially regulated, either in terms of timing and/or binding kinetics, so that their activities do not impair each other in an uncontrolled manner. To understand the nature behind this potential differentiation, we have studied the binding kinetics of the two regulators on five target promoters (PplnA, PplnM, PplnJ, PplnEand PplnG) from the bacteriocin regulon of L. plantarum C11.ResultsBy using surface plasmon resonance spectroscopy we obtained parameters such as association rates, dissociation rates and dissociation constants, showing that the two regulators indeed differ greatly from each other in terms of cooperative binding and binding strength to the different promoters. For instance, cooperativity is very strong for PlnC binding to the promoter of the regulatory operon (PplnA), but not to the promoter of the transport operon (PplnG), while the opposite is seen for PlnD binding to these two promoters. The estimated affinity constants indicate that PlnC can bind to PplnAto activate transcription of the key regulatory operon plnABCD without much interference from PlnD, and that the repressive function of PlnD might act through a different mechanism than repression of the regulatory operon.ConclusionWe have characterised the DNA binding kinetics of the two regulators PlnC and PlnD from the bacteriocin locus in L. plantarum C11. Our data show that PlnC and PlnD, despite their strong homology to each other, differ greatly from each other in terms of binding affinity and cooperativity to the different promoters of the pln regulon.


Molecular Microbiology | 2017

Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae

Gro Anita Stamsås; Daniel Straume; Anja Ruud Winther; Morten Kjos; Cyril Frantzen; Leiv Sigve Håvarstein

In a screen for mutations suppressing the lethal loss of PBP2b in Streptococcus pneumoniae we identified Spr1851 (named EloR), a cytoplasmic protein of unknown function whose inactivation removed the requirement for PBP2b as well as RodA. It follows from this that EloR and the two elongasome proteins must be part of the same functional network. This network also includes StkP, as this serine/threonine kinase phosphorylates EloR on threonine 89 (T89). We found that ΔeloR cells, and cells expressing the phosphoablative form of EloR (EloRT89A), are significantly shorter than wild‐type cells. Furthermore, the phosphomimetic form of EloR (EloRT89E) is not tolerated unless the cell in addition acquires a truncated MreC or non‐functional RodZ protein. By itself, truncation of MreC as well as inactivation of RodZ gives rise to less elongated cells, demonstrating that the stress exerted by the phosphomimetic form of EloR is relieved by suppressor mutations that reduce or abolish the activity of the elongasome. Of note, it was also found that loss of elongasome activity caused by truncation of MreC elicits increased StkP‐mediated phosphorylation of EloR. Together, the results support a model in which phosphorylation of EloR stimulates cell elongation, while dephosphorylation has an inhibitory effect.


Molecular Microbiology | 2017

Identification of pneumococcal proteins that are functionally linked to penicillin‐binding protein 2b (PBP2b)

Daniel Straume; Gro Anita Stamsås; Kari Helene Berg; Zhian Salehian; Leiv Sigve Håvarstein

The oval shape of pneumococci results from a combination of septal and lateral peptidoglycan synthesis. The septal cross‐wall is synthesized by the divisome, while the elongasome drives cell elongation by inserting new peptidoglycan into the lateral cell wall. Each of these molecular machines contains penicillin‐binding proteins (PBPs), which catalyze the final stages of peptidoglycan synthesis, plus a number of accessory proteins. Much effort has been made to identify these accessory proteins and determine their function. In the present paper we have used a novel approach to identify members of the pneumococcal elongasome that are functionally closely linked to PBP2b. We discovered that cells depleted in PBP2b, a key component of the elongasome, display several distinct phenotypic traits. We searched for proteins that, when depleted or deleted, display the same phenotypic changes. Four proteins, RodA, MreD, DivIVA and Spr0777, were identified by this approach. Together with PBP2b these proteins are essential for the normal function of the elongasome. Furthermore, our findings suggest that DivIVA, which was previously assigned as a divisomal protein, is required to correctly localize the elongasome at the negatively curved membrane region between the septal and lateral cell wall.

Collaboration


Dive into the Daniel Straume's collaboration.

Top Co-Authors

Avatar

Leiv Sigve Håvarstein

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Gro Anita Stamsås

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Dzung B. Diep

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Ingolf F. Nes

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Morten Kjos

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Kari Helene Berg

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhian Salehian

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Juan A. Hermoso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

André Zapun

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Carlos Contreras-Martel

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge