Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morten Kjos is active.

Publication


Featured researches published by Morten Kjos.


Journal of Applied Microbiology | 2012

Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance.

Maryam Hassan; Morten Kjos; Ingolf F. Nes; Dzung B. Diep; Farzaneh Lotfipour

Because of the emergence of antibiotic‐resistant pathogens worldwide, a number of infectious diseases have become difficult to treat. This threatening situation is worsened by the fact that very limited progress has been made in developing new and potent antibiotics in recent years. However, a group of antimicrobials, the so‐called bacteriocins, have been much studied lately because they hold a great potential in controlling antibiotic‐resistant pathogens. Bacteriocins are small antimicrobial peptides (AMPs) produced by numerous bacteria. They often act toward species related to the producer with a very high potency (at pico‐ to nanomolar concentration) and specificity. The common mechanisms of killing by bacteriocins are destruction of target cells by pore formation and/or inhibition of cell wall synthesis. Several studies have revealed that bacteriocins display great potential in the medical sector as bacteriocinogenic probiotics and in the clinic as therapeutic agents. In this review, we discuss the emerging antibiotic resistance and strategies to control its dissemination, before we highlight the potential of AMPs from bacteria as a new genre of antimicrobial agents.


Nature Reviews Microbiology | 2013

How to get (a)round: mechanisms controlling growth and division of coccoid bacteria

Mariana G. Pinho; Morten Kjos; Jan-Willem Veening

Bacteria come in a range of shapes, including round, rod-shaped, curved and spiral cells. This morphological diversity implies that different mechanisms exist to guide proper cell growth, division and chromosome segregation. Although the majority of studies on cell division have focused on rod-shaped cells, the development of new genetic and cell biology tools has provided mechanistic insight into the cell cycles of bacteria with different shapes, allowing us to appreciate the underlying molecular basis for their morphological diversity. In this Review, we discuss recent progress that has advanced our knowledge of the complex mechanisms for chromosome segregation and cell division in bacteria which have, deceptively, the simplest possible shape: the cocci.


Peptides | 2009

An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum

Dzung B. Diep; Daniel Straume; Morten Kjos; Carmen Torres; Ingolf F. Nes

The pln locus responsible for bacteriocin biosynthesis in Lactobacillus plantarum C11 was first unraveled about 15 years ago and since then different strains of L. plantarum (NC8, WCFS1, J23 and J51) have been found to harbor mosaic pln loci in their genomes. Each locus is of 18-19kb and contains 22-25 genes organized into 5-6 operons. Together these strains produce four different class IIb two-peptide bacteriocins, plantaricins EF, JK, NC8 and J51 and a pheromone peptide plantaricin A with antimicrobial activity. Their production has been found to be regulated through a quorum-sensing based network consisting of a secreted peptide pheromone, a membrane-located sensor and one or two transcription regulators. The individual loci each contain a set of semi-conserved regulated promoters with subtle differences necessary for the regulators to regulate their promoter activity individually with respect to timing and strength. These subtle differences in the promoters are highly conserved across the different pln loci, in a functionally related manner. In this review we will discuss various aspects of these bacteriocin loci with special focus on their mosaic genetic composition, gene regulation and mode of action. We also present a novel pln locus containing a transposon of the MULE superfamily, a mobile element which has not been described in L. plantarum before.


Cell | 2014

Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin

Jelle Slager; Morten Kjos; Laetitia Attaiech; Jan-Willem Veening

Streptococcus pneumoniae (pneumococcus) kills nearly 1 million children annually, and the emergence of antibiotic-resistant strains poses a serious threat to human health. Because pneumococci can take up DNA from their environment by a process called competence, genes associated with antibiotic resistance can rapidly spread. Remarkably, competence is activated in response to several antibiotics. Here, we demonstrate that antibiotics targeting DNA replication cause an increase in the copy number of genes proximal to the origin of replication (oriC). As the genes required for competence initiation are located near oriC, competence is thereby activated. Transcriptome analyses show that antibiotics targeting DNA replication also upregulate origin-proximal gene expression in other bacteria. This mechanism is a direct, intrinsic consequence of replication fork stalling. Our data suggest that evolution has conserved the oriC-proximal location of important genes in bacteria to allow for a robust response to replication stress without the need for complex gene-regulatory pathways. PAPERCLIP:


Microbiology | 2011

Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria

Morten Kjos; Juan Borrero; Mona Opsata; Dagim Jirata Birri; Helge Holo; Luis M. Cintas; Lars Snipen; Pablo E. Hernández; Ingolf F. Nes; Dzung B. Diep

Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.


Journal of Bacteriology | 2010

An Extracellular Loop of the Mannose Phosphotransferase System Component IIC Is Responsible for Specific Targeting by Class IIa Bacteriocins

Morten Kjos; Zhian Salehian; Ingolf F. Nes; Dzung B. Diep

Class IIa bacteriocins target a phylogenetically defined subgroup of mannose-phosphotransferase systems (man-PTS) on sensitive cells. By the use of man-PTS genes of the sensitive Listeria monocytogenes (mpt) and the nonsensitive Lactococcus lactis (ptn) species to rationally design a series of man-PTS chimeras and site-directed mutations, we identified an extracellular loop of the membrane-located protein MptC that was responsible for specific target recognition by the class IIa bacteriocins.


Applied and Environmental Microbiology | 2011

Mechanisms of Resistance to Bacteriocins Targeting the Mannose Phosphotransferase System

Morten Kjos; Ingolf F. Nes; Dzung B. Diep

ABSTRACT The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed.


Microbiology | 2009

Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells

Morten Kjos; Ingolf F. Nes; Dzung B. Diep

Membrane-located proteins (IIC and IID) of the mannose-phosphotransferase system (man-PTS) have previously been shown to serve as target receptors for several bacteriocins. Although many bacteria contain at least one such man-PTS in their genome, most bacteriocins display a narrow inhibitory spectrum, targeting predominantly bacteria closely related to the producers. In the present study we have analysed the receptor spectrum of one-peptide bacteriocins of class II. A phylogenetic analysis of 86 man-PTSs from a wide range of bacterial genera grouped the man-PTSs into three main clusters (groups I-III). Fourteen man-PTSs distributed across the phylogenetic tree were selected for experimental analysis in a heterologous host. Only members of group I could serve as receptors for class IIa bacteriocins, and the receptor efficiencies varied in a pattern directly related to their phylogenetic position. A multiple sequence alignment of IIC and IID proteins revealed three sequence regions (two in IIC and one in IID) that distinguish members of the bacteriocin-susceptible group from those of the other groups, suggesting that these amino acid regions confer the specific bacteriocin receptor function. Moreover, we demonstrated that variation in sensitivity might also exist within the same species due to differential expression levels of the receptor, since three strains of Lactobacillus sakei harbouring identical man-PTSs were shown to display different expression levels of a man-PTS gene that corresponded to the variation in bacteriocin sensitivity. Together, the results of our study show that the level of bacteriocin susceptibility for a bacterial cell is primarily determined by differences in its man-PTS proteins, although the expression levels of the corresponding genes also play an important role.


Journal of Bacteriology | 2010

The Abi Proteins and Their Involvement in Bacteriocin Self-Immunity

Morten Kjos; Lars Snipen; Zhian Salehian; Ingolf F. Nes; Dzung B. Diep

The Abi protein family consists of putative membrane-bound metalloproteases. While they are involved in membrane anchoring of proteins in eukaryotes, little is known about their function in prokaryotes. In some known bacteriocin loci, Abi genes have been found downstream of bacteriocin structural genes (e.g., pln locus from Lactobacillus plantarum and sag locus from Streptococcus pyogenes), where they probably are involved in self-immunity. By modifying the profile hidden Markov model used to select Abi proteins in the Pfam protein family database, we show that this family is larger than presently recognized. Using bacteriocin-associated Abi genes as a means to search for novel bacteriocins in sequenced genomes, seven new bacteriocin-like loci were identified in Gram-positive bacteria. One such locus, from Lactobacillus sakei 23K, was selected for further experimental study, and it was confirmed that the bacteriocin-like genes (skkAB) exhibited antimicrobial activity when expressed in a heterologous host and that the associated Abi gene (skkI) conferred immunity against the cognate bacteriocin. Similar investigation of the Abi gene plnI and the Abi-like gene plnL from L. plantarum also confirmed their involvement in immunity to their cognate bacteriocins (PlnEF and PlnJK, respectively). Interestingly, the immunity genes from these three systems conferred a high degree of cross-immunity against each others bacteriocins, suggesting the recognition of a common receptor. Site-directed mutagenesis demonstrated that the conserved motifs constituting the putative proteolytic active site of the Abi proteins are essential for the immunity function of SkkI, and to our knowledge, this represents a new concept in self-immunity.


Molecular Microbiology | 2014

Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis

Morten Kjos; Camilla Oppegård; Dzung B. Diep; Ingolf F. Nes; Jan-Willem Veening; Jon Nissen-Meyer; Tom Kristensen

Most bacterially produced antimicrobial peptides (bacteriocins) are thought to kill target cells by a receptor‐mediated mechanism. However, for most bacteriocins the receptor is unknown. For instance, no target receptor has been identified for the two‐peptide bacteriocins (class IIb), whose activity requires the combined action of two individual peptides. To identify the receptor for the class IIb bacteriocin lactococcin G, which targets strains of Lactococcus lactis, we generated 12 lactococcin G‐resistant mutants and performed whole‐genome sequencing to identify mutations causing the resistant phenotype. Remarkably, all had a mutation in or near the gene uppP (bacA), encoding an undecaprenyl pyrophosphate phosphatase; a membrane protein involved in peptidoglycan synthesis. Nine mutants had stop codons or frameshifts in the uppP gene, two had point mutations in putative regulatory regions and one caused an amino acid substitution in UppP. To verify the receptor function of UppP, it was shown that growth of non‐sensitive Streptococcus pneumoniae could be inhibited by lactococcin G when L. lactis uppP was expressed in this bacterium. Furthermore, we show that the related class IIb bacteriocin enterocin 1071 also uses UppP as receptor. The approach used here should be broadly applicable to identify receptors for other bacteriocins as well.

Collaboration


Dive into the Morten Kjos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingolf F. Nes

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Dzung B. Diep

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Daniel Straume

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jelle Slager

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Eric L. Miller

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhian Salehian

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge