Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel T. Bergstralh is active.

Publication


Featured researches published by Daniel T. Bergstralh.


Nature | 2008

NLRX1 is a regulator of mitochondrial antiviral immunity

Chris B. Moore; Daniel T. Bergstralh; Joseph A. Duncan; Yu Lei; Thomas E. Morrison; Albert G. Zimmermann; Mary Ann Accavitti-Loper; Victoria J. Madden; Lijun Sun; Zhengmao Ye; John D. Lich; Mark T. Heise; Zhijian J. Chen; Jenny P.-Y. Ting

The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-β promoter activity and in the disruption of virus-induced RLH–MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.


Nature Reviews Immunology | 2008

NLRs at the intersection of cell death and immunity

Jenny P.-Y. Ting; Stephen B. Willingham; Daniel T. Bergstralh

Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling

Joseph A. Duncan; Daniel T. Bergstralh; Yanhong Wang; Stephen B. Willingham; Zhengmao Ye; Albert G. Zimmermann; Jenny P.-Y. Ting

The CATERPILLER (CLR/NLR) gene family encodes a family of putative nucleotide-binding proteins important for host defense. Although nucleotide binding is thought to be central to this family, this aspect is largely unstudied. The CATERPILLER protein cryopyrin/NALP3 regulates IL-1β processing by assembling the multimeric inflammasome complex. Mutations within the exon encoding the nucleotide-binding domain are associated with hereditary periodic fevers characterized by constitutive IL-1β production. We demonstrate that purified cryopyrin binds ATP, dATP, and ATP-agarose, but not CTP, GTP, or UTP, and exhibits ATPase activity. Mutation of the nucleotide-binding domain reduces ATP binding, caspase-1 activation, IL-1β production, cell death, macromolecular complex formation, self-association, and association with the inflammasome component ASC. Disruption of nucleotide binding abolishes the constitutive activation of disease-associated mutants, identifying nucleotide binding by cryopyrin as a potential target for antiinflammatory pharmacologic intervention.


Journal of Immunology | 2009

NLRP3 (NALP3, Cryopyrin) Facilitates In Vivo Caspase-1 Activation, Necrosis, and HMGB1 Release via Inflammasome-Dependent and -Independent Pathways

Stephen B. Willingham; Irving C. Allen; Daniel T. Bergstralh; Willie June Brickey; Max Tze Han Huang; Debra J. Taxman; Joseph A. Duncan; Jenny P.-Y. Ting

Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the proinflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. Although the control of IL-1β has been well studied, processes that control macrophage cell death and HMGB1 release in animals are poorly understood. This study uses Klebsiella pneumonia as a model organism because it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components NLRP3 and ASC, which are important for caspase-1 activation and IL-1β release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB1, and IL-1β release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control, indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1, suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation.


Journal of Immunology | 2009

Neisseria gonorrhoeae Activates the Proteinase Cathepsin B to Mediate the Signaling Activities of the NLRP3 and ASC-Containing Inflammasome

Joseph A. Duncan; Xi Gao; Max Tze Han Huang; Brian P. O'Connor; Christopher E. Thomas; Stephen B. Willingham; Daniel T. Bergstralh; Gary A. Jarvis; P. Frederick Sparling; Jenny P.-Y. Ting

Neisseria gonorrhoeae is a common sexually transmitted pathogen that significantly impacts female fertility, neonatal health, and transmission of HIV worldwide. N. gonorrhoeae usually causes localized inflammation of the urethra and cervix by inducing production of IL-1β and other inflammatory cytokines. Several NLR (nucleotide-binding domain, leucine-rich repeat) proteins are implicated in the formation of pro-IL-1β-processing complexes called inflammasomes in response to pathogens. We demonstrate that NLRP3 (cryopyrin, NALP3) is the primary NLR required for IL-1β/IL-18 secretion in response to N. gonorrhoeae in monocytes. We also show that N. gonorrhoeae infection promotes NLRP3-dependent monocytic cell death via pyronecrosis, a recently described pathway with morphological features of necrosis, including release of the strong inflammatory mediator HMBG1. Additionally, N. gonorrhoeae activates the cysteine protease cathepsin B as measured by the breakdown of a cathepsin B substrate. Inhibition of cathepsin B shows that this protease is an apical controlling step in the downstream activities of NLRP3 including IL-1β production, pyronecrosis, and HMGB1 release. Nonpathogenic Neisseria strains (Neisseria cinerea and Neisseria flavescens) do not activate NLRP3 as robustly as N. gonorrhoeae. Conditioned medium from N. gonorrhoeae contains factors capable of initiating the NLRP3-mediated signaling events. Isolated N. gonorrhoeae lipooligosaccharide, a known virulence factor from this bacterium that is elaborated from the bacterium in the form of outer membrane blebs, activates both NLRP3-induced IL-1β secretion and pyronecrosis. Our findings indicate that activation of NLRP3-mediated inflammatory response pathways is an important venue associated with host response and pathogenesis of N. gonorrhoeae.


Molecular Cell | 2009

Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination

Sabrina L. Andersen; Daniel T. Bergstralh; Kathryn P. Kohl; Jeannine R. LaRocque; Chris B. Moore; Jeff Sekelsky

DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts.


PLOS ONE | 2009

MAVS-mediated apoptosis and its inhibition by viral proteins.

Yu Lei; Chris B. Moore; Rachael M. Liesman; Brian P. O'Connor; Daniel T. Bergstralh; Zhijian J. Chen; Raymond J. Pickles; Jenny P.-Y. Ting

Background Host responses to viral infection include both immune activation and programmed cell death. The mitochondrial antiviral signaling adaptor, MAVS (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), however its role in virus-induced apoptotic responses has not been elucidated. Principal Findings We show that MAVS causes apoptosis independent of its function in initiating IFN-I production. MAVS-induced cell death requires mitochondrial localization, is caspase dependent, and displays hallmarks of apoptosis. Furthermore, MAVS−/− fibroblasts are resistant to Sendai virus-induced apoptosis. A functional screen identifies the hepatitis C virus NS3/4A and the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) nonstructural protein (NSP15) as inhibitors of MAVS-induced apoptosis, possibly as a method of immune evasion. Significance This study describes a novel role for MAVS in controlling viral infections through the induction of apoptosis, and identifies viral proteins which inhibit this host response.


Trends in Genetics | 2008

Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?

Daniel T. Bergstralh; Jeff Sekelsky

The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss recent additions to the current model and argue that the endonuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1 (XPF-ERCC1) has been heretofore misplaced. During nucleotide excision repair, XPF-ERCC1 makes a single-strand nick adjacent to the lesion. XPF-ERCC1 has been thought to play an analogous role in ICL repair. However, recent data has implicated XPF-ERCC1 in homologous recombination. We suggest that this role, rather than its function in nucleotide excision repair, defines its importance to ICL repair.


Journal of Immunology | 2006

Cutting edge : ASC mediates the induction of multiple cytokines by Porphyromonas gingivalis via caspase-1-dependent and -independent pathways

Debra J. Taxman; Jinghua Zhang; Catherine Champagne; Daniel T. Bergstralh; Heather A. Iocca; John D. Lich; Jenny P.-Y. Ting

Porphyromonas gingivalis (Pg) is a major etiologic agent for chronic periodontitis. Tissue destruction by Pg results partly from induction of host inflammatory responses through TLR2 signaling. This work examines the role of apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), an adaptor molecule important for TLR-mediated caspase-1 activation. Results demonstrate that ASC levels are stable upon infection of human THP1 monocytic cells with Pg but decrease after cytokine induction. Using short hairpin RNA, we demonstrate an essential role for ASC in induction of IL-1β by TLR2, 4, and 5 agonists, live Escherichia coli, and Pg. Induction of IL-6, IL-8, IL-10, and TNF also requires ASC, but this induction is not inhibited by IL-1 receptor antagonist or caspase-1 inhibitor. Similar results in U937 indicate broad applicability of these findings. Pg-infected ASC knockdown THP1 cells exhibit reduced transcript levels and NF-κB activation. These results suggest a role for ASC in cytokine induction by Pg involving both caspase-1-dependent and -independent mechanisms.


Current Biology | 2013

Discs Large Links Spindle Orientation to Apical-Basal Polarity in Drosophila Epithelia

Daniel T. Bergstralh; Holly E. Lovegrove; Daniel St Johnston

Summary Mitotic spindles in epithelial cells are oriented in the plane of the epithelium so that both daughter cells remain within the monolayer, and defects in spindle orientation have been proposed to promote tumorigenesis by causing epithelial disorganization and hyperplasia [1]. Previous work has implicated the apical polarity factor aPKC, the junctional protein APC2, and basal integrins in epithelial spindle orientation, but the underlying mechanisms remain unclear. We show that these factors are not required for spindle orientation in the Drosophila follicular epithelium. Furthermore, aPKC and other apical polarity factors disappear from the apical membrane in mitosis. Instead, spindle orientation requires the lateral factor Discs large (Dlg), a function that is separable from its role in epithelial polarity. In neuroblasts, Pins recruits Dlg and Mud to form an apical complex that orients spindles along the apical-basal axis. We show that Pins and Mud are also necessary for spindle orientation in follicle cells, as is the interaction between Dlg and Pins. Dlg localizes independently of Pins, however, suggesting that its lateral localization determines the planar orientation of the spindle in epithelial cells. Thus, different mechanisms recruit the conserved Dlg/Pins/Mud complex to orient the spindle in opposite directions in distinct cell types.

Collaboration


Dive into the Daniel T. Bergstralh's collaboration.

Top Co-Authors

Avatar

Jenny P.-Y. Ting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Debra J. Taxman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Duncan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris B. Moore

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Brian P. O'Connor

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Max Tze Han Huang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Lei

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge