Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris B. Moore is active.

Publication


Featured researches published by Chris B. Moore.


Immunity | 2009

The NLRP3 Inflammasome Mediates in vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA

Irving C. Allen; Margaret A. Scull; Chris B. Moore; Eda K. Holl; Erin McElvania-TeKippe; Debra J. Taxman; Elizabeth H. Guthrie; Raymond J. Pickles; Jenny P.-Y. Ting

The nucleotide-binding domain and leucine-rich-repeat-containing (NLR) family of pattern-recognition molecules mediate host immunity to various pathogenic stimuli. However, in vivo evidence for the involvement of NLR proteins in viral sensing has not been widely investigated and remains controversial. As a test of the physiologic role of the NLR molecule NLRP3 during RNA viral infection, we explored the in vivo role of NLRP3 inflammasome components during influenza virus infection. Mice lacking Nlrp3, Pycard, or caspase-1, but not Nlrc4, exhibited dramatically increased mortality and a reduced immune response after exposure to the influenza virus. Utilizing analogs of dsRNA (poly(I:C)) and ssRNA (ssRNA40), we demonstrated that an NLRP3-mediated response could be activated by RNA species. Mechanistically, NLRP3 inflammasome activation by the influenza virus was dependent on lysosomal maturation and reactive oxygen species (ROS). Inhibition of ROS induction eliminated IL-1beta production in animals during influenza infection. Together, these data place the NLRP3 inflammasome as an essential component in host defense against influenza infection through the sensing of viral RNA.


Nature | 2008

NLRX1 is a regulator of mitochondrial antiviral immunity

Chris B. Moore; Daniel T. Bergstralh; Joseph A. Duncan; Yu Lei; Thomas E. Morrison; Albert G. Zimmermann; Mary Ann Accavitti-Loper; Victoria J. Madden; Lijun Sun; Zhengmao Ye; John D. Lich; Mark T. Heise; Zhijian J. Chen; Jenny P.-Y. Ting

The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-β promoter activity and in the disruption of virus-induced RLH–MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.


Journal of Biological Chemistry | 2005

The CATERPILLER Protein Monarch-1 Is an Antagonist of Toll-like Receptor-, Tumor Necrosis Factor α-, and Mycobacterium tuberculosis-induced Pro-inflammatory Signals

Kristi L. Williams; John D. Lich; Joseph A. Duncan; William Reed; Prasad Rallabhandi; Chris B. Moore; Sherry Kurtz; V. McNeil Coffield; Mary Ann Accavitti-Loper; Lishan Su; Stefanie N. Vogel; Miriam Braunstein; Jenny P.-Y. Ting

The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) α and Mycobacterium tuberculosis. Monarch-1 reduces NFκB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFκB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFκB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFα, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation.


Journal of Immunology | 2007

Cutting Edge: Monarch-1 Suppresses Non-Canonical NF-κB Activation and p52-Dependent Chemokine Expression in Monocytes

John D. Lich; Kristi L. Williams; Chris B. Moore; Janelle C. Arthur; Beckley K. Davis; Debra J. Taxman; Jenny P.-Y. Ting

CATERPILLER (NOD, NBD-LRR) proteins are rapidly emerging as important mediators of innate and adaptive immunity. Among these, Monarch-1 operates as a novel attenuating factor of inflammation by suppressing inflammatory responses in activated monocytes. However, the molecular mechanisms by which Monarch-1 performs this important function are not well understood. In this report, we show that Monarch-1 inhibits CD40-mediated activation of NF-κB via the non-canonical pathway in human monocytes. This inhibition stems from the ability of Monarch-1 to associate with and induce proteasome-mediated degradation of NF-κB inducing kinase. Congruently, silencing Monarch-1 with shRNA enhances the expression of p52-dependent chemokines.


Molecular Cell | 2009

Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination

Sabrina L. Andersen; Daniel T. Bergstralh; Kathryn P. Kohl; Jeannine R. LaRocque; Chris B. Moore; Jeff Sekelsky

DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts.


PLOS ONE | 2009

MAVS-mediated apoptosis and its inhibition by viral proteins.

Yu Lei; Chris B. Moore; Rachael M. Liesman; Brian P. O'Connor; Daniel T. Bergstralh; Zhijian J. Chen; Raymond J. Pickles; Jenny P.-Y. Ting

Background Host responses to viral infection include both immune activation and programmed cell death. The mitochondrial antiviral signaling adaptor, MAVS (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), however its role in virus-induced apoptotic responses has not been elucidated. Principal Findings We show that MAVS causes apoptosis independent of its function in initiating IFN-I production. MAVS-induced cell death requires mitochondrial localization, is caspase dependent, and displays hallmarks of apoptosis. Furthermore, MAVS−/− fibroblasts are resistant to Sendai virus-induced apoptosis. A functional screen identifies the hepatitis C virus NS3/4A and the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) nonstructural protein (NSP15) as inhibitors of MAVS-induced apoptosis, possibly as a method of immune evasion. Significance This study describes a novel role for MAVS in controlling viral infections through the induction of apoptosis, and identifies viral proteins which inhibit this host response.


Journal of Immunology | 2010

Cutting Edge: NLRP12 Controls Dendritic and Myeloid Cell Migration To Affect Contact Hypersensitivity

Janelle C. Arthur; John D. Lich; Zhengmao Ye; Irving C. Allen; Denis Gris; Justin E. Wilson; Monika Schneider; Kelly E. Roney; Brian P. O'Connor; Chris B. Moore; Amy C. Morrison; Fayyaz S. Sutterwala; John Bertin; Beverly H. Koller; Zhi Liu; Jenny P.-Y. Ting

Nucleotide-binding domain leucine-rich repeat (NLR) proteins are regulators of inflammation and immunity. Although first described 8 y ago, a physiologic role for NLRP12 has remained elusive until now. We find that murine Nlrp12, an NLR linked to atopic dermatitis and hereditary periodic fever in humans, is prominently expressed in dendritic cells (DCs) and neutrophils. Nlrp12-deficient mice exhibit attenuated inflammatory responses in two models of contact hypersensitivity that exhibit features of allergic dermatitis. This cannot be attributed to defective Ag processing/presentation, inflammasome activation, or measurable changes in other inflammatory cytokines. Rather, Nlrp12−/− DCs display a significantly reduced capacity to migrate to draining lymph nodes. Both DCs and neutrophils fail to respond to chemokines in vitro. These findings indicate that NLRP12 is important in maintaining neutrophils and peripheral DCs in a migration-competent state.


Journal of Virology | 2007

Differential Induction of Type I Interferon Responses in Myeloid Dendritic Cells by Mosquito and Mammalian-Cell-Derived Alphaviruses

Reed S. Shabman; Thomas E. Morrison; Chris B. Moore; Laura J. White; Mehul S. Suthar; Linda Hueston; Nestor E. Rulli; Brett A. Lidbury; Jenny Ting; Suresh Mahalingam; Mark T. Heise

ABSTRACT Dendritic cells (DCs) are an important early target cell for many mosquito-borne viruses, and in many cases mosquito-cell-derived arboviruses more efficiently infect DCs than viruses derived from mammalian cells. However, whether mosquito-cell-derived viruses differ from mammalian-cell-derived viruses in their ability to induce antiviral responses in the infected dendritic cell has not been evaluated. In this report, alphaviruses, which are mosquito-borne viruses that cause diseases ranging from encephalitis to arthritis, were used to determine whether viruses grown in mosquito cells differed from mammalian-cell-derived viruses in their ability to induce type I interferon (IFN) responses in infected primary dendritic cells. Consistent with previous results, mosquito-cell-derived Ross River virus (mos-RRV) and Venezuelan equine encephalitis virus (mos-VEE) exhibited enhanced infection of primary myeloid dendritic cells (mDCs) compared to mammalian-cell-derived virus preparations. However, unlike the mammalian-cell-derived viruses, which induced high levels of type I IFN in the infected mDC cultures, mos-RRV and mos-VEE were poor IFN inducers. Furthermore, the poor IFN induction by mos-RRV contributed to the enhanced infection of mDCs by mos-RRV. These results suggest that the viruses initially delivered by the mosquito vector differ from those generated in subsequent rounds of replication in the host, not just with respect to their ability to infect dendritic cells but also in their ability to induce or inhibit antiviral type I IFN responses. This difference may have an important impact on the mosquito-borne viruss ability to successfully make the transition from the arthropod vector to the vertebrate host.


Methods of Molecular Biology | 2010

Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown.

Chris B. Moore; Elizabeth H. Guthrie; Max Tze Han Huang; Debra J. Taxman

Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery.


Molecular and Cellular Biology | 2008

ATP binding by monarch-1/NLRP12 is critical for its inhibitory function

Zhengmao Ye; John D. Lich; Chris B. Moore; Joseph A. Duncan; Kristi L. Williams; Jenny P.-Y. Ting

ABSTRACT The recently discovered nucleotide binding domain-leucine rich repeat (NLR) gene family is conserved from plants to mammals, and several members are associated with human autoinflammatory or immunodeficiency disorders. This family is defined by a central nucleotide binding domain that contains the highly conserved Walker A and Walker B motifs. Although the nucleotide binding domain is a defining feature of this family, it has not been extensively studied in its purified form. In this report, we show that purified Monarch-1/NLRP12, an NLR protein that negatively regulates NF-κB signaling, specifically binds ATP and exhibits ATP hydrolysis activity. Intact Walker A/B motifs are required for this activity. These motifs are also required for Monarch-1 to undergo self-oligomerization, Toll-like receptor- or CD40L-activated association with NF-κB-inducing kinase (NIK) and interleukin-1 receptor-associated kinase 1 (IRAK-1), degradation of NIK, and inhibition of IRAK-1 phosphorylation. The stable expression of a Walker A/B mutant in THP-1 monocytes results in increased production of proinflammatory cytokines and chemokines to an extent comparable to that in cells in which Monarch-1 is silenced via short hairpin RNA. The results of this study are consistent with a model wherein ATP binding regulates the anti-inflammatory activity of Monarch-1.

Collaboration


Dive into the Chris B. Moore's collaboration.

Top Co-Authors

Avatar

Jenny P.-Y. Ting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John D. Lich

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

T. D. Siopes

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Debra J. Taxman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Brian P. O'Connor

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Zhengmao Ye

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel T. Bergstralh

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Duncan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caterina M. Gallippi

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge