Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel T. Gewirth is active.

Publication


Featured researches published by Daniel T. Gewirth.


Journal of Immunology | 2007

The Role of Antibody Polyspecificity and Lipid Reactivity in Binding of Broadly Neutralizing Anti-HIV-1 Envelope Human Monoclonal Antibodies 2F5 and 4E10 to Glycoprotein 41 Membrane Proximal Envelope Epitopes

S. Munir Alam; Mildred McAdams; David Boren; Michael Rak; Richard M. Scearce; Feng Gao; Zenaido T. Camacho; Daniel T. Gewirth; Garnett Kelsoe; Pojen Chen; Barton F. Haynes

Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with Kd values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.


The EMBO Journal | 2002

Structural basis of VDR–DNA interactions on direct repeat response elements

Paul L. Shaffer; Daniel T. Gewirth

The vitamin D receptor (VDR) forms homo‐ or heterodimers on response elements composed of two hexameric half‐sites separated by 3 bp of spacer DNA. We describe here the crystal structures at 2.7–2.8 Å resolution of the VDR DNA‐binding region (DBD) in complex with response elements from three different promoters: osteopontin (SPP), canonical DR3 and osteocalcin (OC). These structures reveal the chemical basis for the increased affinity of VDR for the SPP response element, and for the poor stability of the VDR–OC complex, relative to the canonical DR3 response element. The homodimeric protein–protein interface is stabilized by van der Waals interactions and is predominantly non‐polar. An extensive α‐helix at the C‐terminal end of the VDR DBD resembles that found in the thyroid hormone receptor (TR), and suggests a mechanism by which VDR and TR discriminate among response elements. Selective structure‐based mutations in the asymmetric homodimeric interface result in a VDR DBD protein that is defective in homodimerization but now forms heterodimers with the 9‐cis retinoic acid receptor (RXR) DBD.


Journal of Biological Chemistry | 2003

Structure of the N-terminal Domain of GRP94 BASIS FOR LIGAND SPECIFICITY AND REGULATION

Karen Soldano; Arif Jivan; Christopher V. Nicchitta; Daniel T. Gewirth

GRP94, the endoplasmic reticulum (ER) paralog of the chaperone Hsp90, plays an essential role in the structural maturation or secretion of a subset of proteins destined for transport to the cell surface, such as the Toll-like receptors 2 and 4, and IgG, respectively. GRP94 differs from cytoplasmic Hsp90 by exhibiting very weak ATP binding and hydrolysis activity. GRP94 also binds selectively to a series of substituted adenosine analogs. The high resolution crystal structures at 1.75–2.1 Å of the N-terminal and adjacent charged domains of GRP94 in complex with N-ethylcarboxamidoadenosine, radicicol, and 2-chlorodideoxyadenosine reveals a structural mechanism for ligand discrimination among hsp90 family members. The structures also identify a putative subdomain that may act as a ligand-responsive switch. The residues of the charged region fold into a disordered loop whose termini are ordered and continue the twisted beta sheet that forms the structural core of the N-domain. This continuation of the beta sheet past the charged domain suggests a structural basis for the association of the N-terminal and middle domains of the full-length chaperone.


Nature Chemical Biology | 2013

Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2

Pallav D. Patel; Pengrong Yan; Paul M. Seidler; Hardik J. Patel; Weilin Sun; Chenghua Yang; Nanette L. S. Que; Tony Taldone; Paola Finotti; Ralph Stephani; Daniel T. Gewirth; Gabriela Chiosis

Although the Hsp90 chaperone family, comprised in humans of four paralogs, Hsp90α, Hsp90β, Grp94 and Trap-1, has important roles in malignancy, the contribution of each paralog to the cancer phenotype is poorly understood. This is in large part because reagents to study paralog-specific functions in cancer cells have been unavailable. Here we combine compound library screening with structural and computational analyses to identify purine-based chemical tools that are specific for Hsp90 paralogs. We show that Grp94 selectivity is due to the insertion of these compounds into a new allosteric pocket. We use these tools to demonstrate that cancer cells use individual Hsp90 paralogs to regulate a client protein in a tumor-specific manner and in response to proteome alterations. Finally, we provide new mechanistic evidence explaining why selective Grp94 inhibition is particularly efficacious in certain breast cancers.


Journal of Biological Chemistry | 2012

The Molecular Chaperone gp96/GRP94 Interacts with Toll-like Receptors and Integrins via Its C-terminal Hydrophobic Domain

Shuang Wu; Feng Hong; Daniel T. Gewirth; Beichu Guo; Bei Liu; Zihai Li

Background: gp96 is a molecular chaperone that binds and chaperones TLRs and integrins. But the structural basis of such is unknown. Results: Mutation of a C-terminal loop structure in gp96 abrogates its ability to bind and chaperone both receptors. Conclusion: We have successfully mapped the client-binding domain of gp96. Significance: This study shall facilitate the development of targeted gp96 inhibitors for treatment of inflammation. The structural basis for molecular chaperones to discern misfolded proteins has long been an enigma. As the endoplasmic reticulum paralogue of the cytosolic HSP90, gp96 (GRP94, HSP90b1) is an essential molecular chaperone for Toll-like receptors (TLRs) and integrins. However, little is known about its client-binding domain (CBD). Herein, we provide genetic and biochemical evidence to definitively demonstrate that a C-terminal loop structure, formed by residues 652–678, is the critical region of CBD for both TLRs and integrins. Deletion of this region affects neither the intrinsic ATPase activity nor the overall conformation of gp96. However, without it, the chaperoning function of gp96 collapses. We also find a critical Met pair (Met658-Met662) for the folding of integrins but not TLRs. Moreover, we find that the TLR binding to gp96 is also dependent on the C-terminal dimerization domain but not the N-terminal ATP-binding pocket of gp96. Our study has unveiled surprisingly the exquisite specificity of gp96 in substrate binding and suggests a manipulation of its CBD as an alternative strategy for targeted therapy of a variety of diseases.


Journal of Biological Chemistry | 2005

Structure of Unliganded GRP94, the Endoplasmic Reticulum Hsp90 BASIS FOR NUCLEOTIDE-INDUCED CONFORMATIONAL CHANGE

D. Eric Dollins; Robert M. Immormino; Daniel T. Gewirth

GRP94, the endoplasmic reticulum paralog of Hsp90, is regulated by adenosine nucleotides that bind to its N-terminal regulatory domain. Because of its weak affinity for nucleotides, the functionally relevant transition in GRP94 is likely to be between the unliganded and nucleotide-bound states. We have determined the structure of the unliganded GRP94 N-domain. The helix 1-4-5 subdomain of the unliganded protein adopts the closed conformation seen in the structure of the protein in complex with inhibitors. This conformation is distinct from the open conformation of the subdomain seen when the protein is bound to ATP or ADP. ADP soaked into crystals of the unliganded protein reveals an intermediate conformation midway between the open and closed states and demonstrates that in GRP94 the conversion between the open and closed states is driven by ligand binding. The direction of the observed movement in GRP94 shows that nucleotides act to open the subdomain elements rather than close them, which is contrary to the motion proposed for Hsp90. These observations support a model where ATP binding dictates the conformation of the N-domain and regulates its ability to form quaternary structural interactions.


Journal of Molecular Biology | 2009

Different Poses for Ligand and Chaperone in Inhibitor Bound Hsp90 and GRP94: Implications for Paralog-specific Drug Design

Robert M. Immormino; Louis E. Metzger; Patrick N. Reardon; D. Eric Dollins; Brian S. J. Blagg; Daniel T. Gewirth

Hsp90 chaperones contain an N-terminal ATP binding site that has been effectively targeted by competitive inhibitors. Despite the myriad of inhibitors, none to date have been designed to bind specifically to just one of the four mammalian Hsp90 paralogs, which are cytoplasmic Hsp90alpha and beta, endoplasmic reticulum GRP94, and mitochondrial Trap-1. Given that each of the Hsp90 paralogs is responsible for chaperoning a distinct set of client proteins, specific targeting of one Hsp90 paralog may result in higher efficacy and therapeutic control. Specific inhibitors may also help elucidate the biochemical roles of each Hsp90 paralog. Here, we present side-by-side comparisons of the structures of yeast Hsp90 and mammalian GRP94, bound to the pan-Hsp90 inhibitors geldanamycin (Gdm) and radamide. These structures reveal paralog-specific differences in the Hsp90 and GRP94 conformations in response to Gdm binding. We also report significant variation in the pose and disparate binding affinities for the Gdm-radicicol chimera radamide when bound to the two paralogs, which may be exploited in the design of paralog-specific inhibitors.


Journal of Medicinal Chemistry | 2013

Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series.

Tony Taldone; Pallav D. Patel; Maulik R. Patel; Hardik J. Patel; Christopher E. Evans; Anna Rodina; Stefan O. Ochiana; Smit K. Shah; Mohammad Uddin; Daniel T. Gewirth; Gabriela Chiosis

We here describe the first reported comprehensive analysis of Hsp90 paralogue affinity and selectivity in the clinical Hsp90 inhibitor chemotypes. This has been possible through the development of a versatile experimental assay based on a new FP-probe (16a) that we both describe here. The assay can test rapidly and accurately the binding affinity of all major Hsp90 chemotypes and has a testing range that spans low nanomolar to millimolar binding affinities. We couple this assay with a computational analysis that allows for rationalization of paralogue selectivity and defines not only the major binding modes that relay pan-paralogue binding or, conversely, paralogue selectivity, but also identifies molecular characteristics that impart such features. The methods developed here provide a blueprint for parsing out the contribution of the four Hsp90 paralogues to the perceived biological activity with the current Hsp90 chemotypes and set the ground for the development of paralogue selective inhibitors.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Structural analysis of RXR-VDR interactions on DR3 DNA.

Paul L. Shaffer; Daniel T. Gewirth

The Vitamin D receptor (VDR) is a ligand-responsive transcription factor that forms homo- or heterodimers on response elements composed of two hexameric half-sites separated by three base pairs of spacer DNA. Binding of 1alpha,25-dihydroxyvitamin D(3) to the full-length VDR causes destabilization of the VDR homodimer and formation of a heterodimeric complex with the 9-cis retinoic acid receptor (RXR). VDR and RXR DNA-binding domains (DBDs) do not mimic this behavior, however: VDR DBD homodimers are formed exclusively, even in the presence of excess RXR DBD. Exploiting the asymmetry of the heterodimer and our knowledge of the homodimeric DBD interface, we have engineered VDR mutants that disfavor the homodimeric complex and allow for the formation of heterodimeric DBD complexes with RXR on DR3 elements. One of these complexes has been crystallized and its structure determined. However, the polarity of the proteins relative to the DNA is non-physiological due to crystal packing between symmetry-related VDR DBD protomers. This reveals a flattened energy landscape that appears to rely on elements outside of the core DBD for response element discrimination in the heterodimer.


Journal of Biological Chemistry | 2013

α7 Helix Region of αI Domain Is Crucial for Integrin Binding to Endoplasmic Reticulum Chaperone gp96 A POTENTIAL THERAPEUTIC TARGET FOR CANCER METASTASIS

Feng Hong; Bei Liu; Gabriela Chiosis; Daniel T. Gewirth; Zihai Li

Background: Integrins are chaperoned by gp96, but the binding region to gp96 remains unknown. Results: Deletion of α7 helix from αI domain of integrin abolished the interaction between integrin and gp96. Targeting this region by corresponding peptide blocked cell invasion. Conclusion: We successfully mapped the binding region of integrin to gp96. Significance: This study will facilitate the development of new cancer therapeutics. Integrins play important roles in regulating a diverse array of cellular functions crucial to the initiation, progression, and metastasis of tumors. Previous studies have shown that a majority of integrins are folded by the endoplasmic reticulum chaperone gp96. Here, we demonstrate that the dimerization of integrin αL and β2 is highly dependent on gp96. The αI domain (AID), a ligand binding domain shared by seven integrin α-subunits, is a critical region for integrin binding to gp96. Deletion of AID significantly reduced the interaction between integrin αL and gp96. Overexpression of AID intracellularly decreased surface expression of gp96 clients (integrins and Toll-like receptors) and cancer cell invasion. The α7 helix region is crucial for AID binding to gp96. A cell-permeable α7 helix peptide competitively inhibited the interaction between gp96 and integrins and blocked cell invasion. Thus, targeting the binding site of α7 helix of AID on gp96 is potentially a new strategy for treatment of cancer metastasis.

Collaboration


Dive into the Daniel T. Gewirth's collaboration.

Top Co-Authors

Avatar

Zihai Li

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Gabriela Chiosis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Feng Hong

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Eric Dollins

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge