Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zihai Li is active.

Publication


Featured researches published by Zihai Li.


The EMBO Journal | 1993

Tumor rejection antigen gp96/grp94 is an ATPase : implications for protein folding and antigen presentation

Zihai Li; Pramod K. Srivastava

Immunization of mice with gp96/grp94 heat shock proteins (HSPs) elicits tumor‐specific cellular immunity to the tumors from which gp96 is isolated. However, the cDNA sequence of gp96 is identical among tumors and normal tissues. This raises the question regarding the structural basis of the specific immunogenicity of gp96. As HSPs bind a wide array of molecules including peptides, we have proposed that gp96 may not be immunogenic per se, but may chaperone antigenic peptides. Furthermore, gp96 is localized predominantly in the lumen of the endoplasmic reticulum (ER) suggesting that it may act as a peptide acceptor and as accessory to peptide loading of MHC class I molecules. We demonstrate here that gp96 molecules contain ATP‐binding cassettes, bind ATP and possess an Mg(2+)‐dependent ATPase activity. Gp96 preparations are also observed to contain tightly bound peptides, which can be eluted by acid extraction. These properties of gp96 are consistent with its proposed roles in chaperoning antigenic peptides and in facilitating MHC class I‐‐peptide assembly in the ER lumen. We present a model to explain how interaction of gp96 with MHC class I may result in transfer of peptides to the latter.


Current Opinion in Immunology | 2002

Roles of heat-shock proteins in antigen presentation and cross-presentation

Zihai Li; Antoine Ménoret; Pramod K. Srivastava

Heat-shock proteins chaperone antigenic peptides that are generated within cells. Such chaperoning is a part of the endogenous pathway of antigen presentation by MHC class I molecules. In addition, peptides that are chaperoned by heat-shock proteins, or are released by cell stress or death, are taken up by antigen-presenting cells and re-presented by their MHC molecules.


Nature Medicine | 2003

Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo

Douglas G. Millar; Kristine M. Garza; Bernhard Odermatt; Alisha R. Elford; Nobuyuki Ono; Zihai Li; Pamela S. Ohashi

Pathogens or pathogen-associated molecular patterns can signal to cells of the innate immune system and trigger effective adaptive immunity. However, relatively little is known about how the innate immune system detects tissue injury or necrosis. Evidence suggests that the release of heat-shock proteins (HSPs) may provide adjuvant-like signals, but the ability of HSPs to promote activation or tolerance in vivo has not been addressed. In this study we show that Hsp70 promotes dendritic cell (DC) function and, together with antigen, triggers autoimmune disease in vivo.


Current protocols in immunology | 2004

Heat‐Shock Proteins

Zihai Li; Pramod K. Srivastava

Heat‐shock proteins (HSPs), or stress proteins, are highly conserved and present in all organisms and in all cells of all organisms. Selected HSPs, also known as chaperones, play crucial roles in folding/unfolding of proteins, assembly of multiprotein complexes, transport/sorting of proteins into correct subcellular compartments, cell‐cycle control and signaling, and protection of cells against stress/apoptosis. More recently, HSPs have been implicated in antigen presentation with the role of chaperoning and transferring antigenic peptides to the class I and class II molecules of the major histocompatibility complexes. In addition, extracellular HSPs can stimulate professional antigen‐presenting cells of the immune system, such as macrophages and dendritic cells. HSPs constitute a large family of proteins that are often classified based on their molecular weight: hsp10, hsp40, hsp60, hsp70, hsp90, etc. This unit contains a table that lists common HSPs and summarizes their characteristics including (a) name, (b) subcellular localization, (c) known function, (d) chromosome assignment, (e) brief comments, and (f) references.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases

Bei Liu; Jie Dai; Hong Zheng; Diliana Stoilova; Shaoli Sun; Zihai Li

Heat shock proteins have been implicated as endogenous activators for dendritic cells (DCs). Without tissue distress or death, these intracellular molecules are inaccessible to surface receptor(s) on DCs, possibly to avoid uncontrolled DC activation and breakdown of immunologic tolerance. We herein addressed this hypothesis in transgenic mice by enforcing cell surface expression of gp96, a ubiquitous heat shock protein of the endoplasmic reticulum. Although a pan-specific promoter is used for transgene expression, neither the expression level nor the tissue distribution of the endogenous gp96 was altered by this maneuver. However, cell surface gp96 induced significant DC activations and spontaneous lupus-like autoimmune diseases, even though the development/functions of lymphocytic compartments were unaltered. Using a bone marrow chimera approach, we further demonstrated that both DC activation and autoimmunity elicited by cell surface gp96 are dependent on the downstream adaptor protein MyD88 for signaling by Toll/IL-1 receptor family. Our study not only established the proinflammatory property of cell surface gp96 in vivo, but also suggested a chronic stimulation of DCs by gp96 as a pathway to initiate spontaneous autoimmune diseases.


Journal of Immunology | 2001

Cell Surface Targeting of Heat Shock Protein gp96 Induces Dendritic Cell Maturation and Antitumor Immunity

Hong Zheng; Jie Dai; Diliana Stoilova; Zihai Li

gp96 is a residential heat shock protein of the endoplasmic reticulum that has been implicated in the activation of dendritic cells (DCs) for the initiation of adaptive immunity. By genetic targeting of gp96 onto the cell surface, we demonstrate that direct access of gp96 to DCs induces their maturation, resulting in secretion of proinflammatory cytokines IL-1β, IL-12, and chemokine monocyte chemoattractant protein-1 and up-regulation of the expression of MHC class I, MHC class II, CD80, CD86, and CD40. Furthermore, surface expression of gp96 on tumor cells renders them regressive via a T lymphocyte-dependent mechanism. This work reinforces the notion that gp96 is an endogenous DC activator and unveils that the context in which Ag is delivered to the immune system, in this case surface expression of gp96, has profound influence on immunity. It also establishes a principle of bridging innate and adaptive immunity for cancer immunotherapy by surface targeting of an intracellular heat shock protein.


Journal of Hematology & Oncology | 2017

Is CD47 an innate immune checkpoint for tumor evasion

Xiaojuan Liu; Hyunwoo Kwon; Zihai Li; Yang-Xin Fu

Cluster of differentiation 47 (CD47) (also known as integrin-associated protein) is a ubiquitously expressed glycoprotein of the immunoglobulin superfamily that plays a critical role in self-recognition. Various solid and hematologic cancers exploit CD47 expression in order to evade immunological eradication, and its overexpression is clinically correlated with poor prognoses. One essential mechanism behind CD47-mediated immune evasion is that it can interact with signal regulatory protein-alpha (SIRPα) expressed on myeloid cells, causing phosphorylation of the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and recruitment of Src homology 2 domain-containing tyrosine phosphatases to ultimately result in delivering an anti-phagocytic—“don’t eat me”—signal. Given its essential role as a negative checkpoint for innate immunity and subsequent adaptive immunity, CD47-SIRPα axis has been explored as a new target for cancer immunotherapy and its disruption has demonstrated great therapeutic promise. Indeed, CD47 blocking antibodies have been found to decrease primary tumor size and/or metastasis in various pre-clinical models. In this review, we highlight the various functions of CD47, discuss anti-tumor responses generated by both the innate and adaptive immune systems as a consequence of administering anti-CD47 blocking antibody, and finally elaborate on the clinical potential of CD47 blockade. We argue that CD47 is a checkpoint molecule for both innate and adaptive immunity for tumor evasion and is thus a promising target for cancer immunotherapy.


Journal of Immunology | 2006

TLR4 Up-Regulation at Protein or Gene Level Is Pathogenic for Lupus-Like Autoimmune Disease

Bei Liu; Yi Yang; Jie Dai; Ruslan Medzhitov; Marina A. Freudenberg; Ping L. Zhang; Zihai Li

TLR4 is the receptor for the Gram-negative bacterial cell wall component LPS. TLR4 signaling is controlled by both positive and negative regulators to balance optimal immune response and potential sepsis. Unchecked TLR4 activation might result in autoimmune diseases, a hypothesis that has not been formally resolved. In this study, we found that TLR4 signaling to LPS can be positively enforced by expressing gp96 on cell surfaces through the chaperone function of, but not the direct signaling by, gp96; TLR4 as well as the commensal flora are essential for the production of anti-dsDNA Ab and the immune complex-mediated glomerulonephritis in transgenic mice that express surface gp96. Moreover, a similar constellation of autoimmunity was evident in mice that encode multiple copies of tlr4 gene. Our study has revealed that increased TLR4 signaling alone without exogenous insult can break immunological tolerance. It provides a strong experimental evidence for TLR4 dysregulation as an etiology of lupus-like renal disease.


Journal of Hematology & Oncology | 2011

Unfolded protein response in cancer: the Physician's perspective

Xuemei Li; Kezhong Zhang; Zihai Li

The unfolded protein response ( UPR) is a cascade of intracellular stress signaling events in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER). Cancer cells are often exposed to hypoxia, nutrient starvation, oxidative stress and other metabolic dysregulation that cause ER stress and activation of the UPR. Depending on the duration and degree of ER stress, the UPR can provide either survival signals by activating adaptive and antiapoptotic pathways, or death signals by inducing cell death programs. Sustained induction or repression of UPR pharmacologically may thus have beneficial and therapeutic effects against cancer. In this review, we discuss the basic mechanisms of UPR and highlight the importance of UPR in cancer biology. We also update the UPR-targeted cancer therapeutics currently in clinical trials.


Current Molecular Medicine | 2009

17 AAG for HSP90 Inhibition in Cancer – From Bench to Bedside

Saad Z Usmani; Robert Bona; Zihai Li

Heat shock protein 90 (HSP90) family of proteins are ubiquitous molecular chaperones that are involved in folding, activation, maturation and assembly of many proteins that include essential mediators of signal transduction and cell cycle progression. They are abundant in eukaryotic cells and localized to the cytoplasm, mitochondria as well as the endoplasmic reticulum under normal conditions, making up 1-2% of all cellular proteins. HSP90 proteins have increased expression in a number of malignancies. A large number of HSP90 client proteins have been shown to be necessary for the development, proliferation and survival of specific types of cancers. HSP90 inhibition can affect multiple oncogenic pathways and involved proteins, therefore make it an attractive target for drug development. This article serves as an overview of the pre-clinical data and clinical trial data on HSP90 inhibitor 17-AAG in different malignancies. 17-AAG has shown significant anti-tumor activity against a spectrum of cancers in the pre-clinical studies and information from various phases of clinical trials is growing. The potential indication of 17-AGG for the treatment of refractory multiple myeloma now awaits for the results of two phase III studies. More work needs to be done before the broader oncological use of HSP90 inhibitors in the area of defining HSP90 client proteins, understanding the mechanism of HSP90 actions, identifying reliable surrogate markers for HSP90 inhibition in vivo and optimizing drug delivery and efficacy.

Collaboration


Dive into the Zihai Li's collaboration.

Top Co-Authors

Avatar

Bei Liu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Feng Hong

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Shaoli Sun

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Saleh Rachidi

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Bill X. Wu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yi Yang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Shuang Wu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yongliang Zhang

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Daniel T. Gewirth

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jie Dai

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge