Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel T. Shaughnessy is active.

Publication


Featured researches published by Daniel T. Shaughnessy.


Cell Research | 2008

XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks

Julie K. Horton; Mary A. Watson; Daniel T. Shaughnessy; Jack A. Taylor; Samuel H. Wilson

Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5′-phosphate and 3′-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1−/− mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1−/−, and to a lesser extent in pol β−/− cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and pol β−/− cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1−/− cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.


Environmental Health Perspectives | 2014

Mitochondria, energetics, epigenetics, and cellular responses to stress

Daniel T. Shaughnessy; Kimberly A. McAllister; Leroy Worth; Astrid C. Haugen; Joel N. Meyer; Frederick E. Domann; Bennett Van Houten; Raul Mostoslavsky; Scott J. Bultman; Andrea Baccarelli; Thomas J. Begley; Robert W. Sobol; Matthew D. Hirschey; Trey Ideker; Janine H. Santos; William C. Copeland; Raymond R. Tice; David M. Balshaw; Frederick L. Tyson

Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.1408418


Genetic Epidemiology | 2011

Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model—Recommendations From an NIH Workshop

Ebony Bookman; Kimberly A. McAllister; Elizabeth M. Gillanders; Kay Wanke; David M. Balshaw; Joni L. Rutter; Jill Reedy; Daniel T. Shaughnessy; Tanya Agurs-Collins; Dina N. Paltoo; Audie A. Atienza; Laura J. Bierut; Peter Kraft; M. Daniele Fallin; Frederica P. Perera; Eric Turkheimer; Jason D. Boardman; Mary L. Marazita; Stephen M. Rappaport; Eric Boerwinkle; Stephen J. Suomi; Neil E. Caporaso; Irva Hertz-Picciotto; Kristen C. Jacobson; William L. Lowe; Lynn R. Goldman; Priya Duggal; Megan R. Gunnar; Teri A. Manolio; Eric D. Green

Although it is recognized that many common complex diseases are a result of multiple genetic and environmental risk factors, studies of gene‐environment interaction remain a challenge and have had limited success to date. Given the current state‐of‐the‐science, NIH sought input on ways to accelerate investigations of gene‐environment interplay in health and disease by inviting experts from a variety of disciplines to give advice about the future direction of gene‐environment interaction studies. Participants of the NIH Gene‐Environment Interplay Workshop agreed that there is a need for continued emphasis on studies of the interplay between genetic and environmental factors in disease and that studies need to be designed around a multifaceted approach to reflect differences in diseases, exposure attributes, and pertinent stages of human development. The participants indicated that both targeted and agnostic approaches have strengths and weaknesses for evaluating main effects of genetic and environmental factors and their interactions. The unique perspectives represented at the workshop allowed the exploration of diverse study designs and analytical strategies, and conveyed the need for an interdisciplinary approach including data sharing, and data harmonization to fully explore gene‐environment interactions. Further, participants also emphasized the continued need for high‐quality measures of environmental exposures and new genomic technologies in ongoing and new studies. Genet. Epidemiol. 35: 217‐225, 2011.  © 2011 Wiley‐Liss, Inc.


Mutation Research | 2001

The antimutagenic effect of vanillin and cinnamaldehyde on spontaneous mutation in Salmonella TA104 is due to a reduction in mutations at GC but not AT sites.

Daniel T. Shaughnessy; R. Woodrow Setzer; David M. DeMarini

Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that, when added to assay plates, reduced the spontaneous mutant frequency in Salmonella typhimurium strain TA104 (hisG428, rfa, uvrB, pKM101) by 50%. To date, no study has demonstrated whether or not the antimutagenic effects of an agent are due to a reduction in all classes of mutations or to a reduction in selective classes of mutations. To explore this issue, we have determined the spontaneous mutation spectrum in TA104 as well as the mutation spectrum after treatment of cells with antimutagens at concentrations that produced approximately a 50% reduction in mutant frequency but only a 10% reduction in survival. Statistical analysis revealed no significant difference between the mutation spectra of VAN- and CIN-treated cells. Relative to untreated cells, treatment with either VAN or CIN produced a significant reduction in mutations at GC sites, whereas neither compound produced a significant reduction in mutations at AT sites. Antimutagenesis experiments in hisG428 strains of Salmonella with varying DNA repair backgrounds showed that VAN and CIN require SOS repair genes to produce an antimutagenic effect against spontaneous mutagenesis. Studies evaluating the effect of VAN and CIN on growth rate showed that neither compound suppressed growth relative to untreated cells. To our knowledge, this is the first study to examine if an antimutagen reduced all or just some classes of mutations that were available for reduction.


PLOS ONE | 2011

Inhibition of Fried Meat-Induced Colorectal DNA Damage and Altered Systemic Genotoxicity in Humans by Crucifera, Chlorophyllin, and Yogurt

Daniel T. Shaughnessy; Lisa M. Gangarosa; Barbara Schliebe; David M. Umbach; Zongli Xu; Beth MacIntosh; Mark G. Knize; Peggy P. Matthews; Adam Swank; Robert S. Sandler; David M. DeMarini; Jack A. Taylor

Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C) or high temperature (250°C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis. Trial Registration ClinicalTrials.gov NCT00340743.


Mutation Research-reviews in Mutation Research | 2013

Harnessing genomics to identify environmental determinants of heritable disease

Carole L. Yauk; J. Lucas Argueso; Scott S. Auerbach; Sean Davis; David M. DeMarini; George R. Douglas; Yuri E. Dubrova; Rosalie K. Elespuru; Thomas W. Glover; Barbara F. Hales; Catherine B. Klein; James R. Lupski; David K. Manchester; Francesco Marchetti; Alexandre Montpetit; John J. Mulvihill; Bernard Robaire; Wendie A. Robbins; Guy A. Rouleau; Daniel T. Shaughnessy; Christopher M. Somers; Vi James G. Taylor; Jacquetta M. Trasler; Michael D. Waters; Thomas E. Wilson; Kristine L. Witt; Jack B. Bishop

Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent-offspring trios from highly exposed human populations, and controlled dose-response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations.


Environmental Health Perspectives | 2016

Biomonitoring in the Era of the Exposome.

Kristine K. Dennis; Elizabeth Marder; David M. Balshaw; Yuxia Cui; Michael A. Lynes; Gary J. Patti; Stephen M. Rappaport; Daniel T. Shaughnessy; Martine Vrijheid; Dana Boyd Barr

Background: The term “exposome” was coined in 2005 to underscore the importance of the environment to human health and to bring research efforts in line with those on the human genome. The ability to characterize environmental exposures through biomonitoring is key to exposome research efforts. Objectives: Our objectives were to describe why traditional and nontraditional (exposomic) biomonitoring are both critical in studies aiming to capture the exposome and to make recommendations on how to transition exposure research toward exposomic approaches. We describe the biomonitoring needs of exposome research and approaches and recommendations that will help fill the gaps in the current science. Discussion: Traditional and exposomic biomonitoring approaches have key advantages and disadvantages for assessing exposure. Exposomic approaches differ from traditional biomonitoring methods in that they can include all exposures of potential health significance, whether from endogenous or exogenous sources. Issues of sample availability and quality, identification of unknown analytes, capture of nonpersistent chemicals, integration of methods, and statistical assessment of increasingly complex data sets remain challenges that must continue to be addressed. Conclusions: To understand the complexity of exposures faced throughout the lifespan, both traditional and nontraditional biomonitoring methods should be used. Through hybrid approaches and the integration of emerging techniques, biomonitoring strategies can be maximized in research to define the exposome. Citation: Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB. 2017. Biomonitoring in the era of the exposome. Environ Health Perspect 125:502–510; http://dx.doi.org/10.1289/EHP474


Mutation Research | 2000

Mutation spectra in Salmonella of analogues of MX: implications of chemical structure for mutational mechanisms

David M. DeMarini; Stefano Landi; Takeshi Ohe; Daniel T. Shaughnessy; Robert Franzén; Ann M. Richard

We determined the mutation spectra in Salmonella of four chlorinated butenoic acid analogues (BA-1 through BA-4) of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and compared the results with those generated previously by us for MX and a related compound, MCF. We then considered relationships between the properties of mutagenic potency and mutational specificity for these six chlorinated butenoic acid analogues. In TA98, the three most potent mutagens, BA-3, BA-4, MX, and the organic extract, all induced large percentages of complex frameshifts (33-67%), which distinguish these agents from any other class of compound studied previously. In TA100, which has only GC sites for mutation recovery, >71% of the mutations induced by all of the agents were GC-->TA transversions. The availability of both GC and TA sites for mutation in TA104 resulted in greater distinctions in mutational specificity than in TA100. MX targeted GC sites almost exclusively (98%); the structurally similar BA-4 and BA-2 produced mutations at similar frequencies at both GC and AT sites; and the structurally similar BA-3 and BA-1 induced most mutations at AT sites (69%). Thus, large variations in structural properties influencing relative mutagenic potency appeared to be distinct from the more localized similar structural features influencing mutagenic specificity in TA104. Among a set of physicochemical properties examined for the six butenoic acids, a significant correlation was found between pK(a) and mutagenic potency in TA100, even when the unionized fraction of the activity dose was considered. In addition, a correlation in CLOGP for BA-1 to BA-4 suggested a role for bioavailability in determining mutagenic potency. These results illustrate the potential value of structural analyses for exploring the relationship between chemical structure and mutational mechanisms. To our knowledge, this is the first study in which such analyses have been applied to structural analogues for which both mutagenic potency and mutation spectra date were available.


Mutation Research | 1999

Mutation spectra in Salmonella TA98, TA100, and TA104 of two phenylbenzotriazole mutagens (PBTA-1 and PBTA-2) detected in the Nishitakase River in Kyoto, Japan

Takeshi Ohe; Daniel T. Shaughnessy; Stefano Landi; Yoshiyasu Terao; Hiroyuki Sawanishi; Haruo Nukaya; Keiji Wakabayashi; David M. DeMarini

Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive.


Environmental and Molecular Mutagenesis | 2000

Mutation spectra of the drinking water mutagen 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone (MCF) in Salmonella TA100 and TA104: comparison to MX

Daniel T. Shaughnessy; Takeshi Ohe; Stefano Landi; Sarah H. Warren; Ann M. Richard; Tony Munter; Robert Franzén; Leif Kronberg; David M. DeMarini

The chlorinated drinking water mutagen 3‐chloro‐4‐methyl‐5‐hydroxy‐2(5H)‐furanone (MCF) occurs at concentrations similar to or greater than that of the related furanone 3‐chloro‐4‐(dichloromethyl)‐5‐hydroxy‐2(5H)‐furanone (MX). MCF and MX differ structurally only by replacement of a 3‐methyl in MCF with a 3‐dichloromethyl in MX; yet, MCF is significantly less mutagenic than MX and produces different adducts when reacted with nucleosides or DNA. To explore further the effects that these structural differences might have on the biological activity of MCF and MX, we determined the mutation spectra of MCF in Salmonella strains TA100 and TA104 and of MX in strain TA104; the spectrum of MX in TA100 had been determined previously. In TA100, which presents only GC targets for mutagenesis, MCF induced primarily (75%) GC → TA transversions, with most of the remaining revertants (20%) being GC → AT transitions. This spectrum was not significantly different from that of MX in TA100 (P = 0.07). In TA104, which presents both GC and AT targets, MCF induced a lower percentage (57%) of GC → TA transversions, with most of the remaining revertants (33%) being AT → TA transversions. In contrast, MX induced almost only (98%) GC → TA transversions in TA104, with the remaining revertants (2%) being AT → TA transversions. Thus, almost all (98%) of the MX mutations were targeted at GC sites in TA104, whereas only 63% of the MCF mutations were so targeted. These results are consistent with the published findings that MX: (1) forms an adduct on guanosine when reacted with guanosine, (2) induces apurinic sites in DNA, and (3) forms a minor adduct on adenosine when reacted with adenosine or DNA. The results are also consistent with evidence that MCF forms adenosine adducts when reacted with adenosine. Our results show that the replacement of the 4‐methyl in MCF with a 4‐dichloromethyl to form MX not only increases dramatically the mutagenic potency but also shifts significantly the mutagenic specificity from almost equal targeting of GC and AT sites by MCF to almost exclusive targeting of GC sites by MX. Environ. Mol. Mutagen. 35:106–113, 2000 Published 2000 Wiley‐Liss, Inc.

Collaboration


Dive into the Daniel T. Shaughnessy's collaboration.

Top Co-Authors

Avatar

David M. DeMarini

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann M. Richard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David M. Balshaw

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Takeshi Ohe

Kyoto Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Umbach

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jack A. Taylor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Leroy Worth

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert Franzén

Tampere University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge