Daniel Varon Silva
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Varon Silva.
Current Opinion in Chemical Biology | 2009
Marie-Lyn Hecht; Pierre Stallforth; Daniel Varon Silva; Alexander Adibekian; Peter H. Seeberger
Vaccinations provide an efficient and cost-effective way to combat devastating human diseases. Besides pathogenic protein markers, cell surface carbohydrates from biological sources are widely used as vaccines. Recently, synthetic immunogenic carbohydrate-protein conjugates have been advanced to vaccine candidates. Progress in the chemical synthesis of oligosaccharides and conjugation methods stimulated the development of novel carbohydrate-based vaccine candidates.
Journal of Mass Spectrometry | 2013
Kathrin Stavenhagen; Hannes Hinneburg; Morten Thaysen-Andersen; Laura Hartmann; Daniel Varon Silva; Jens Fuchser; Stephanie Kaspar; Erdmann Rapp; Peter H. Seeberger; Daniel Kolarich
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro-heterogeneity) and evaluate the molar site occupancy (macro-heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N-glycans was chemically synthesised by solid-phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N-acetylglucosamine-linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well-defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI-IT, ESI-Q-TOF, MALDI-TOF, ESI/MALDI-FT-ICR-MS). Depending on the ion source/mass analyser, glycopeptides carrying complex-type N-glycans exhibited clearly lower signal strengths (10-50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano-ESI and medium-pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro-heterogeneity and macro-heterogeneity by label-free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics.
Journal of the American Chemical Society | 2013
Ana Ardá; Pilar Diarte Blasco; Daniel Varon Silva; Volker Schubert; Sabine André; Marta Bruix; F. Javier Cañada; Hans-Joachim Gabius; Carlo Unverzagt; Jesús Jiménez-Barbero
The current surge in defining glycobiomarkers by applying lectins rekindles interest in definition of the sugar-binding sites of lectins at high resolution. Natural complex-type N-glycans can present more than one potential binding motif, posing the question of the actual mode of interaction when interpreting, for example, lectin array data. By strategically combining N-glycan preparation with saturation-transfer difference NMR and modeling, we illustrate that epitope recognition depends on the structural context of both the sugar and the lectin (here, wheat germ agglutinin and a single hevein domain) and cannot always be predicted from simplified model systems studied in the solid state. We also monitor branch-end substitutions by this strategy and describe a three-dimensional structure that accounts for the accommodation of the α2,6-sialylated terminus of a biantennary N-glycan by viscumin. In addition, we provide a structural explanation for the role of terminal α2,6-sialylation in precluding the interaction of natural N-glycans with lectin from Maackia amurensis . The approach described is thus capable of pinpointing lectin-binding motifs in natural N-glycans and providing detailed structural explanations for lectin selectivity.
Angewandte Chemie | 2011
Yu-Hsuan Tsai; Sebastian Götze; Nahid Azzouz; Heung Sik Hahm; Peter H. Seeberger; Daniel Varon Silva
Building blocks: a new, general synthetic strategy, which allows the construction of branched glycosylphosphatidylinositols (GPIs), enables the synthesis of parasitic glycolipid 1 from Toxoplasma gondii. In addition, the structure is further confirmed by recognition of monoclonal antibodies.
Journal of the American Chemical Society | 2012
Marko Wehle; Ivan Vilotijevic; Reinhard Lipowsky; Peter H. Seeberger; Daniel Varon Silva; Mark Santer
About 1% of the human proteome is anchored to the outer leaflet of cell membranes via a class of glycolipids called GPI anchors. In spite of their ubiquity, experimental information about the conformational dynamics of these glycolipids is rather limited. Here, we use a variety of computer simulation techniques to elucidate the conformational flexibility of the Man-α(1→2)-Man-α(1→6)-Man-α(1→4)-GlcNAc-α-OMe tetrasaccharide backbone 2 that is an essential and invariant part of all GPI-anchors. In addition to the complete tetrasaccharide structure, all disaccharide and trisaccharide subunits of the GPI backbone have been studied as independent moieties. The extended free energy landscape as a function of the corresponding dihedral angles has been determined for each glycosidic linkage relevant for the conformational preferences of the tetrasaccharide backbone (Man-α(1→2)-Man, Man-α(1→6)Man and Man-α(1→4)-GlcNAc). We compared the free energy landscapes obtained for the same glycosidic linkage within different oligosaccharides. This comparison reveals that the conformational properties of a linkage are primarily determined by its two connecting carbohydrate moieties, just as in the corresponding disaccharide. Furthermore, we can show that the torsions of the different glycosidic linkages within the GPI tetrasaccharide can be considered as statistically independent degrees of freedom. Using this insight, we are able to map the atomistic description to an effective, reduced model and study the response of the tetrasaccharide 2 to external forces. Even though the backbone assumes essentially a single, extended conformation in the absence of mechanical stress, it can be easily bent by forces of physiological magnitude.
Current Biology | 2015
Javier Manzano-Lopez; Ana M. Perez-Linero; Auxiliadora Aguilera-Romero; María Esther Martín; Tatsuki Okano; Daniel Varon Silva; Peter H. Seeberger; Howard Riezman; Kouichi Funato; Veit Goder; Ralf Erik Wellinger; Manuel Muñiz
BACKGROUND Export from the ER is an essential process driven by the COPII coat, which forms vesicles at ER exit sites (ERESs) to transport mature secretory proteins to the Golgi. Although the basic mechanism of COPII assembly is known, how COPII machinery is regulated to meet varying cellular secretory demands is unclear. RESULTS Here, we report a specialized COPII system that is actively recruited by luminal cargo maturation. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are luminal secretory proteins anchored to the membrane by the glycolipid GPI. After protein attachment in the ER lumen, lipid and glycan parts of the GPI anchor are remodeled. In yeast, GPI-lipid remodeling concentrates GPI-APs into specific ERESs. We found that GPI-glycan remodeling induces subsequent recruitment of the specialized ER export machinery that enables vesicle formation from these specific ERESs. First, the transmembrane cargo receptor p24 complex binds GPI-APs as a lectin by recognizing the remodeled GPI-glycan. Binding of remodeled cargo induces the p24 complex to recruit the COPII subtype Lst1p, specifically required for GPI-AP ER export. CONCLUSIONS Our results show that COPII coat recruitment by cargo receptors is not constitutive but instead is actively regulated by binding of mature ligands. Therefore, we reveal a novel functional link between luminal cargo maturation and COPII vesicle budding, providing a mechanism to adjust specialized COPII vesicle production to the amount and quality of their luminal cargos that are ready for ER exit. This helps to understand how the ER export machinery adapts to different needs for luminal cargo secretion.
Angewandte Chemie | 2014
Sebastian Götze; Nahid Azzouz; Yu-Hsuan Tsai; Uwe Groß; Anika Reinhardt; Chakkumkal Anish; Peter H. Seeberger; Daniel Varon Silva
Around 2 billion people worldwide are infected with the apicomplexan parasite Toxoplasma gondii which induces a variety of medical conditions. For example, primary infection during pregnancy can result in fetal death or mental retardation of the child. Diagnosis of acute infections in pregnant women is challenging but crucially important as the drugs used to treat T. gondii infections are potentially harmful to the unborn child. Better, faster, more reliable, and cheaper means of diagnosis by using defined antigens for accurate serological tests are highly desirable. Synthetic pathogen-specific glycosylphosphatidylinositol (GPI) glycan antigens are diagnostic markers and have been used to distinguish between toxoplasmosis disease states using human sera.
ChemBioChem | 2015
Shinya Hanashima; Sebastian Götze; Yan Liu; Akemi Ikeda; Kyoko Kojima-Aikawa; Naoyuki Taniguchi; Daniel Varon Silva; Ten Feizi; Peter H. Seeberger; Yoshiki Yamaguchi
ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analysis of the interaction of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs) by glycan microarray and NMR. Pathogen‐related glycan microarray analysis identified phosphatidylinositol mono‐ and di‐mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Saturation transfer difference (STD) NMR and transferred NOE experiments with chemically synthesized PIM glycans indicate that PIMs preferentially interact with ZG16p by using the mannose residues. The binding site of PIM was identified by chemical‐shift perturbation experiments with uniformly 15N‐labeled ZG16p. NMR results with docking simulations suggest a binding mode of ZG16p and PIM glycan; this will help to elucidate the physiological role of ZG16p.
ACS Chemical Biology | 2016
Eike-Christian Wamhoff; Jonas Hanske; Lennart Schnirch; Jonas Aretz; Maurice Grube; Daniel Varon Silva; Christoph Rademacher
C-type lectin receptors (CLRs) play a pivotal role in pathogen defense and immune homeostasis. Langerin, a CLR predominantly expressed on Langerhans cells, represents a potential target receptor for the development of anti-infectives or immunomodulatory therapies. As mammalian carbohydrate binding sites typically display high solvent exposure and hydrophilicity, the recognition of natural monosaccharide ligands is characterized by low affinities. Consequently, glycomimetic ligand design poses challenges that extend to the development of suitable assays. Here, we report the first application of (19)F R2-filtered NMR to address these challenges for a CLR, i.e., Langerin. The homogeneous, monovalent assay was essential to evaluating the in silico design of 2-deoxy-2-carboxamido-α-mannoside analogs and enabled the implementation of a fragment screening against the carbohydrate binding site. With the identification of both potent monosaccharide analogs and fragment hits, this study represents an important advancement toward the design of glycomimetic Langerin ligands and highlights the importance of assay development for other CLRs.
Glycobiology | 2015
Sebastian Götze; Anika Reinhardt; Andreas Geissner; Nahid Azzouz; Yu-Hsuan Tsai; Reka Kurucz; Daniel Varon Silva; Peter H. Seeberger
Vaccination against the ubiquitous parasite Toxoplasma gondii would provide the most efficient prevention against toxoplasmosis-related congenital, brain and eye diseases in humans. We investigated the immune response elicited by pathogen-specific glycosylphosphatidylinositol (GPI) glycoconjugates using carbohydrate microarrays in a BALB/c mouse model. We further examined the protective properties of the glycoconjugates in a lethal challenge model using the virulent T. gondii RH strain. Upon immunization, mice raised antibodies that bind to the respective GPIs on carbohydrate microarrays, but were mainly directed against an unspecific GPI epitope including the linker. The observed immune response, though robust, was unable to provide protection in mice when challenged with a lethal dose of viable tachyzoites. We demonstrate that anti-GPI antibodies raised against the here described semi-synthetic glycoconjugates do not confer protective immunity against T. gondii in BALB/c mice.