Daniel Yokell
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Yokell.
Annals of Neurology | 2016
Keith Johnson; Aaron P. Schultz; Rebecca A. Betensky; J. Alex Becker; Jorge Sepulcre; Dorene M. Rentz; Elizabeth C. Mormino; Jasmeer P. Chhatwal; Rebecca Amariglio; Kate V. Papp; Gad A. Marshall; Mark W. Albers; Samantha Mauro; Lesley Pepin; Jonathan Alverio; Kelly Judge; Marlie Philiossaint; Timothy M. Shoup; Daniel Yokell; Bradford C. Dickerson; Teresa Gomez-Isla; Bradley T. Hyman; Neil Vasdev; Reisa A. Sperling
Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease‐modifying therapies.
Annals of Neurology | 2015
Keith Johnson; Aaron P. Schultz; Rebecca A. Betensky; J. Alex Becker; Jorge Sepulcre; Dorene M. Rentz; Elizabeth C. Mormino; Jasmeer P. Chhatwal; Rebecca Amariglio; Kate V. Papp; Gad A. Marshall; Mark W. Albers; Samantha Mauro; Lesley Pepin; Jonathan Alverio; Kelly Judge; Marlie Philiossaint; Timothy M. Shoup; Daniel Yokell; Bradford C. Dickerson; Teresa Gomez-Isla; Bradley T. Hyman; Neil Vasdev; Reisa A. Sperling
Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease‐modifying therapies.
Journal of Labelled Compounds and Radiopharmaceuticals | 2013
Timothy M. Shoup; Daniel Yokell; Peter A. Rice; Raul N. Jackson; Eli Livni; Keith Johnson; Thomas J. Brady; Neil Vasdev
Fluorine-18 labeled 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([(18) F]T807) is a potent and selective agent for imaging paired helical filaments of tau and is among the most promising PET radiopharmaceuticals for this target in early clinical trials. The present study reports a simplified one-step method for the synthesis of [(18) F]T807 that is broadly applicable for routine clinical production using a GE TRACERlab™ FXFN radiosynthesis module. Key facets of our optimized radiosynthesis include development and use of a more soluble protected precursor, tert-butyl 7-(6-nitropyridin-3-yl)-5H-pyrido[4,3-b]indole-5-carboxylate, as well as new HPLC separation conditions that enable a facile one-step synthesis. During the nucleophilic fluorinating reaction with potassium cryptand [(18) F]fluoride (K[(18) F]/K222 ) in DMSO at 130 °C over 10 min the precursor is concurrently deprotected. Formulated [(18) F]T807 was prepared in an uncorrected radiochemical yield of 14 ± 3%, with a specific activity of 216 ± 60 GBq/µmol (5837 ± 1621 mCi/µmol) at the end of synthesis (60 min; n = 3) and validated for human use. This methodology offers the advantage of faster synthesis in fewer steps, with simpler automation that we anticipate will facilitate widespread clinical use of [(18) F]T807.
The Journal of Nuclear Medicine | 2015
Nickeisha A. Stephenson; Jason P. Holland; Alina Kassenbrock; Daniel Yokell; Eli Livni; Steven H. Liang; Neil Vasdev
Translation of new methodologies for labeling nonactivated aromatic molecules with 18F remains a challenge. Here, we report a one-step, regioselective, metal-free 18F-labeling method that uses a hypervalent iodonium(III) ylide precursor, to prepare the radiopharmaceutical 18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile (18F-FPEB). Methods: Automated radiosynthesis of 18F-FPEB was achieved by reaction of the ylide precursor (4 mg) with 18F-Et4NF in dimethylformamide at 80°C for 5 min and formulated for injection within 1 h. Results: 18F-FPEB was synthesized in 20% ± 5% (n = 3) uncorrected radiochemical yields relative to 18F-fluoride, with specific activities of 666 ± 51.8 GBq (18 ± 1.4 Ci)/μmol at the end of synthesis and was validated for human use. Conclusion: Radiofluorination of iodonium (III) ylides proved to be an efficient radiosynthetic strategy for synthesis of 18F-labeled radiopharmaceuticals.
The Journal of Nuclear Medicine | 2017
Dustin Wooten; Nicolas Guehl; Eline E. Verwer; Timothy M. Shoup; Daniel Yokell; Nevena Zubcevik; Neil Vasdev; Ross Zafonte; Keith Johnson; Georges El Fakhri; Marc D. Normandin
18F-T807 is a PET radiotracer developed for imaging tau protein aggregates, which are implicated in neurologic disorders including Alzheimer disease and traumatic brain injury (TBI). The current study characterizes 18F-T807 pharmacokinetics in human subjects using dynamic PET imaging and metabolite-corrected arterial input functions. Methods: Nine subjects (4 controls, 3 with a history of TBI, 2 with mild cognitive impairment due to suspected Alzheimer disease) underwent dynamic PET imaging for up to 120 min after bolus injection of 18F-T807 with arterial blood sampling. Total volume of distribution (VT) was estimated using compartmental modeling (1- and 2-tissue configurations) and graphical analysis techniques (Logan and multilinear analysis 1 [MA1] regression methods). Reference region–based methods of quantification were explored including Logan distribution volume ratio (DVR) and static SUV ratio (SUVR) using the cerebellum as a reference tissue. Results: The percentage of unmetabolized 18F-T807 in plasma followed a single exponential with a half-life of 17.0 ± 4.2 min. Metabolite-corrected plasma radioactivity concentration fit a biexponential (half-lives, 18.1 ± 5.8 and 2.4 ± 0.5 min). 18F-T807 in gray matter peaked quickly (SUV > 2 at ∼5 min). Compartmental modeling resulted in good fits, and the 2-tissue model with estimated blood volume correction (2Tv) performed best, particularly in regions with elevated binding. VT was greater in mild cognitive impairment subjects than controls in the occipital, parietal, and temporal cortices as well as the posterior cingulate gyrus, precuneus, and mesial temporal cortex. High focal uptake was found in the posterior corpus callosum of a TBI subject. Plots from Logan and MA1 graphical methods became linear by 30 min, yielding regional estimates of VT in excellent agreement with compartmental analysis and providing high-quality parametric maps when applied in voxelwise fashion. Reference region–based approaches including Logan DVR (t* = 55 min) and SUVR (80- to 100-min interval) were highly correlated with DVR estimated using 2Tv (R2 = 0.97, P < 0.0001). Conclusion: 18F-T807 showed rapid clearance from plasma and properties suitable for tau quantification with PET. Furthermore, simplified approaches using DVR (t* = 55 min) and static SUVR (80–100 min) with cerebellar reference tissue were found to correlate highly with compartmental modeling outcomes.
MedChemComm | 2014
Steven H. Liang; Daniel Yokell; Raul N. Jackson; Peter A. Rice; Ronald J. Callahan; Keith Johnson; David Alagille; Gilles Tamagnan; Thomas Lee Collier; Neil Vasdev
The synthesis of fluorine-18 labeled 3-fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile ([18F]FPEB) for imaging metabotropic glutamate receptor subtype type 5 (mGluR5) was achieved with a commercial continuous-flow microfluidics device. This work represents the first positron emission tomography (PET) radiopharmaceutical that is suitable for human use with this technology. We also describe a validated synthesis of [18F]FPEB with a commercial reactor-based system.
Applied Radiation and Isotopes | 2012
Daniel Yokell; Alicia Leece; Artem Lebedev; Reza Miraghaie; Carroll Edward Ball; Jianzhong Zhang; Hartmuth C. Kolb; Arkadij M. Elizarov; Umar Mahmood
We report an automated synthesis of [(18)F]-FMISO utilizing a prototype microfluidic radiochemistry module. The instrument allows for production of the tracer with 58%±2% (11 runs) decay corrected yield. Total time of production, including synthesis and purification averages 60 min. Use of the microfluidic platform results in a specific activity of 138.6 GBq/μ mol, which is higher than previously reported for conventional reactors.
Molecular Imaging | 2014
Steven H. Liang; Daniel Yokell; Marc D. Normandin; Peter A. Rice; Raul N. Jackson; Timothy M. Shoup; Thomas J. Brady; Georges El Fakhri; Thomas Lee Collier; Neil Vasdev
Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([18F]T807) and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [18F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FXFN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [18F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [18F]T807 (≈ 500 mCi, radiochemical purity 95%) were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% ( n = 3), relative to starting [18F]fluoride (end of bombardment), with high radiochemical purity (≥ 99%) and high specific activities (6 Ci/μmol) in 100 minutes. A clinical research study was carried out with [18F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology.Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([18F]T807) and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [18F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FXFN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [18F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [18F]T807 (≈ 500 mCi, radiochemical purity 95%) were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% (n = 3), relative to starting [18F]fluoride (end of bombardment), with high radiochemical purity (≥ 99%) and high specific activities (6 Ci/μmol) in 100 minutes. A clinical research study was carried out with [18F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology.
Applied Radiation and Isotopes | 2013
Alicia Leece; Pedram Heidari; Daniel Yokell; Umar Mahmood
OBJECTIVES Often peptides used in synthesis of radiopharmaceutical PET tracers are lipophilic and adhere to the walls of container closure systems (CCS) such that costly peptide and product are not fully recoverable after synthesis occurs. This investigation compares a standard United States Pharmacopeia (USP) Type I borosilicate glass CCS to a cyclic polyolefin copolymer Crystal Zenith(®) (CZ) CCS, for (68)Ga-chloride and (68)Ga-DOTATOC ([(68)Ga] Ga-DOTA-D-Phe1-Tyr3-octreotide) retention in the reaction vial after labeling. METHODS (68)Gallium labeling of DOTATOC was conducted by adding (68)Ga-chloride, 2M HEPES (4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid) or 0.75 M sodium acetate, and 1-30 µg of DOTATOC into the CZ or glass CCS. The reaction mixture was heated for 15 min and cooled to room temperature. The crude reaction mixture was then withdrawn via syringe, for final processing. The CCS was then assayed using a dose calibrator to determine the amount of retained (68)Ga-DOTATOC. Statistical significance was assessed using an unpaired Students t-test. RESULTS In all experiments (n=72) with various amounts of peptide and different buffering systems, the CZ CCS retained less activity than the glass CCS. Using 2 M HEPES and 15 µg or 30 µg of DOTATOC, the CZ CCS retained approximately 10% less of the labeled DOTATOC compared to the glass CCS (p<0.05). Utilizing either a sodium acetate or a HEPES buffering system with 15 µg or 30 µg of DOTATOC, the CZ CCS retained approximately 2.5% less of the total reaction activity compared to the glass CCS (p<0.05). Product yield was equivalent in glass and CZ CCS under the same reaction conditions. Both the CZ and glass vials showed no retention of (68)Ga-chloride. CONCLUSION For applications involving the labeling of peptides such as (68)Ga-DOTATOC, the CZ CCS compared to the glass CCS, results in an improved recovery of product.
Alzheimers & Dementia | 2014
Keith Johnson; Elizabeth C. Mormino; Dorene M. Rentz; Aaron P. Schultz; J. Alex Becker; Jorge Sepulcre; Jasmeer P. Chhatwal; Rebecca Amariglio; Kate V. Papp; Gad A. Marshall; Timothy M. Shoup; Daniel Yokell; Thomas J. Brady; Bradley T. Hyman; Neil Vasdev; Reisa A. Sperling
core pathological entities that define Alzheimer’s disease (AD). Little is known about the role of a third protein, the TAR DNA binding protein of 43kDa (TDP-43). The aim of this study was to determine whether TDP-43 independently has any effect on the clinical and neuroimaging characteristics typically ascribed to Alzheimer’s disease (AD) pathology, and whether TDP-43 pathology could help shed light on the phenomenon of resilient cognition in AD. Methods: Three-hundred forty-two subjects pathologically diagnosed with intermediate-high probability AD (Braak IV-VI) were screened for the presence, burden and distribution of TDP43. All cases had been classified as cognitively impaired or cognitively normal, prior to death. Atlas-based parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. Regression models controlling for age at death, apolipoprotein e4, amyloid deposition, Lewy bodies, and vascular disease were utilized to explore associations between TDP-43 and cognition or brain atrophy, stratified by Braak stage. In addition, mediation analysis was performed to determine whether the effects of TDP-43 were mediated by hippocampal sclerosis. Results: One-hundred ninety-five (57%) cases were TDP-positive. The TDP-positive cases could be divided into five stages (TDP-43 in AD (TAD) stages I-V), beginning in the amygdala. After accounting for potential confounders, TDP-43 had a strong effect on cognition, memory loss, and hippocampal atrophy in AD, particularly at lower Braak stages (Figure). These effects were not mediated by hippocampal sclerosis. TDP-positive subjects were 10X more likely to be cognitively impaired at death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal atrophy were associated with greater TDP-43 burden and correlated with the TAD staging scheme. Conclusions: The findings demonstrate that TDP-43 deposition in AD progresses in a stereotypic manner that can be divided into five distinct topographic stages. Importantly, TDP-43 amplifies memory loss and hippocampal atrophy in AD and also appears to be able to overpower what has been termed resilient cognition in AD. TDP-43 therefore is a key player in the AD neurodegenerative process and should be considered a potential therapeutic target for the treatment of AD.