Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Zytnicki is active.

Publication


Featured researches published by Daniel Zytnicki.


The Journal of Neuroscience | 2007

Resonant or Not, Two Amplification Modes of Proprioceptive Inputs by Persistent Inward Currents in Spinal Motoneurons

Marin Manuel; Claude Meunier; Maud Donnet; Daniel Zytnicki

Why do motoneurons possess two persistent inward currents (PICs), a fast sodium current and a slow calcium current? To answer this question, we replaced the natural PICs with dynamic clamp-imposed artificial PICs at the soma of spinal motoneurons of anesthetized cats. We investigated how PICs with different kinetics (1–100 ms) amplify proprioceptive inputs. We showed that their action depends on the presence or absence of a resonance created by the Ih current. In resonant motoneurons, a fast PIC enhances the resonance and amplifies the dynamic component of Ia inputs elicited by ramp-and-hold muscle stretches. This facilitates the recruitment of these motoneurons, which likely innervate fast contracting motor units developing large forces, e.g., to restore balance or produce ballistic movements. In nonresonant motoneurons, in contrast, a fast PIC easily triggers plateau potentials, which leads to a dramatic amplification of the static component of Ia inputs. This likely facilitates the recruitment of these motoneurons, innervating mostly slowly contracting and fatigue-resistant motor units, during postural activities. Finally, a slow PIC may switch a resonant motoneuron to nonresonant by counterbalancing Ih, thus changing the action of the fast PIC. A modeling study shows that Ih needs to be located on the dendrites to create the resonance, and it predicts that dendritic PICs amplify synaptic input in the same manner as somatic PICs.


The Journal of Physiology | 2004

How shunting inhibition affects the discharge of lumbar motoneurones: a dynamic clamp study in anaesthetized cats

L. Brizzi; C. Meunier; Daniel Zytnicki; M. Donnet; David Hansel; B. Lamotte D'Incamps; C. Van Vreeswijk

In the present work, dynamic clamp was used to inject a current that mimicked tonic synaptic activity in the soma of cat lumbar motoneurones with a microelectrode. The reversal potential of this current could be set at the resting potential so as to prevent membrane depolarization or hyperpolarization. The only effect of the dynamic clamp was then to elicit a constant and calibrated increase of the motoneurone input conductance. The effect of the resulting shunt was investigated on repetitive discharges elicited by current pulses. Shunting inhibition reduced very substantially the firing frequency in the primary range without changing the slope of the current–frequency curves. The shift of the I–f curve was proportional to the conductance increase imposed by the dynamic clamp and depended on an intrinsic property of the motoneurone that we called the shunt potential. The shunt potential ranged between 11 and 37 mV above the resting potential, indicating that the sensitivity of motoneurones to shunting inhibition was quite variable. The shunt potential was always near or above the action potential voltage threshold. A theoretical model allowed us to interpret these experimental results. The shunt potential was shown to be a weighted time average of membrane voltage. The weighting factor is the phase response function of the neurone that peaks at the end of the interspike interval. The shunt potential indicates whether mixed synaptic inputs have an excitatory or inhibitory effect on the ongoing discharge of the motoneurone.


The Journal of Neuroscience | 2011

Mixed Mode Oscillations in Mouse Spinal Motoneurons Arise from a Low Excitability State

Caroline Iglesias; Claude Meunier; Marin Manuel; Yulia Timofeeva; Nicolas Delestrée; Daniel Zytnicki

We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intracellular recordings in vivo (including dynamic clamp experiments) in mouse spinal motoneurons and modeling, we show that the subthreshold oscillations are due to the spike currents and that MMOs appear each time the membrane is in a low excitability state. Slow kinetic processes largely contribute to this low excitability. The clockwise hysteresis in the I–F relationship, frequently observed in mouse motoneurons, is mainly due to a substantial slow inactivation of the sodium current. As a consequence, less sodium current is available for spiking. This explains why a large subprimary range with numerous oscillations is present in motoneurons displaying a clockwise hysteresis. In motoneurons whose I–F curve exhibits a counterclockwise hysteresis, it is likely that the slow inactivation operates on a shorter time scale and is substantially reduced by the de-inactivating effect of the afterhyperpolarization (AHP) current, thus resulting in a more excitable state. This accounts for the short subprimary firing range with only a few MMOs seen in these motoneurons. Our study reveals a new role for the AHP current that sets the membrane excitability level by counteracting the slow inactivation of the sodium current and allows or precludes the appearance of MMOs.


The Journal of Physiology | 2006

The afterhyperpolarization conductance exerts the same control over the gain and variability of motoneurone firing in anaesthetized cats

Marin Manuel; C. Meunier; Maud Donnet; Daniel Zytnicki

Does the afterhyperpolarization current control the gain and discharge variability of motoneurones according to the same law? We investigated this issue in lumbar motoneurones of anaesthetized cats. Using dynamic clamp, we measured the conductance, time constant and driving force of the AHP current in a sample of motoneurones and studied how the gain was correlated to these quantities. To study the action of the AHP on the discharge variability and to compare it to its action on the gain, we injected an artificial AHP‐like current in motoneurones. This increased the natural AHP. In three motoneurones, we abolished most of the natural AHP with the calcium chelator BAPTA to investigate the condition where the discharge was essentially controlled by the artificial AHP. Our results demonstrate that both the gain and the coefficient of variation of the firing rate are inversely proportional to the magnitude and to the time constant of the artificial AHP conductance. This indicates that the AHP exerts the same control over the gain and the variability. This mechanism ensures that the variability of the discharge is modulated with the gain. This guarantees a great regularity of the discharge when the motoneurone is in a low excitability state and hence good control of the force produced.


Journal of Integrative Neuroscience | 2011

ALPHA, BETA AND GAMMA MOTONEURONS: FUNCTIONAL DIVERSITY IN THE MOTOR SYSTEM'S FINAL PATHWAY

Marin Manuel; Daniel Zytnicki

Since their discovery in the late 19th century our conception of motoneurons has steadily evolved. Motoneurons share the same general function: they drive the contraction of muscle fibers and are the final common pathway, i.e., the seat of convergence of all the central and peripheral pathways involved in motricity. However, motoneurons innervate different types of muscular targets. Ordinary muscle fibers are subdivided into three main subtypes according to their structural and mechanical properties. Intrafusal muscle fibers located within spindles can elicit either a dynamic, or a static, action on the spindle sensory endings. No less than seven categories of motoneurons have thereby been identified on the basis of their innervation pattern. This functional diversity has hinted at a similar diversity in the inputs each motoneuron receives, as well as in the electrical, or cellular, properties of the motoneurons that match the properties of their muscle targets. The notion of the diverse properties of motoneurons has been well established by the work of many prominent neuroscientists. But in todays scientific literature, it tends to fade and motoneurons are often thought of as a homogenous group, which develop from a given population of precursor cells, and which express a common set of molecules. We first present here the historical milestones that led to the recognition of the functional diversity of motoneurons. We then review how the intrinsic electrical properties of motoneurons are precisely tuned in each category of motoneurons in order to produce an output that is adapted to the contractile properties of their specific targets.


The Journal of Neuroscience | 2005

How Much Afterhyperpolarization Conductance Is Recruited by an Action Potential? A Dynamic-Clamp Study in Cat Lumbar Motoneurons

Marin Manuel; Claude Meunier; Maud Donnet; Daniel Zytnicki

We accurately measured the conductance responsible for the afterhyperpolarization (medium AHP) that follows a single spike in spinal motoneurons of anesthetized cats. This was done by using the dynamic-clamp method. We injected an artificial current in the neurons that increased the AHP amplitude, and we made use of the fact that the intensity of the natural AHP current at the trough of the voltage trajectory was related linearly to the AHP amplitude. We determined at the same time the conductance and the reversal potential of the AHP current. This new method was validated by a simple theoretical model incorporating AHP and hyperpolarization-activated (Ih) currents and could be applied when the decay time constant of the AHP conductance was at least five times shorter than the estimated Ih activation time. This condition was fulfilled in 33 of 44 motoneurons. The AHP conductance varied from 0.3 to 1.4 μS in both slow- and fast-type motoneurons, which was approximately the same range as the input conductance of the entire population. However, AHP and input conductances were not correlated. The larger AHP in slow-type motoneurons was mainly attributable to their smaller input conductance compared with fast motoneurons. The likeness of the AHP conductance in both types of motoneurons is in sharp contrast to differences in AHP decay time and explains why slow- and fast-type motoneurons have similar gain.


Journal of Computational Neuroscience | 1998

Reduction of Presynaptic Action Potentials by PAD: Model and Experimental Study

Boris Lamotte d'Incamps; Claude Meunier; Marie-Laure Monnet; Léna Jami; Daniel Zytnicki

A compartmental model of myelinated nerve fiber was used to show that primary afferent depolarization (PAD), as elicited by axo-axonic synapses, reduces the amplitude of propagating action potentials primarily by interfering with ionic current responsible for the spike regeneration. This reduction adds to the effect of the synaptic shunt, increases with the PAD amplitude, and occurs at significant distances from the synaptic zone. PAD transiently enhances the sodium current activation, which partly accounts for the PAD-induced fiber hyperexcitability, and enhances sodium inactivation on a slower time course, thus reducing the amplitude of action potentials. In vivo, intra-axonal recordings from the intraspinal portion of group I afferent fibers were carried out to verify that depolarizations reduced the amplitude of propagating action potentials as predicted by the model. This article suggests PAD might play a major role in presynaptic inhibition.


Journal of Physiology-paris | 1999

Flexible processing of sensory information induced by axo-axonic synapses on afferent fibers.

Boris Lamotte d'Incamps; Claude Meunier; Daniel Zytnicki; Léna Jami

Recent experiments indicate that afferent information is processed in the intraspinal arborisation of mammalian group I fibres. During muscle contraction, Ib inputs arising from tendon organs are filtered out by presynaptic inhibition after their entry in the spinal cord. This paper reviews the mechanisms by which GABAergic axo-axonic synapses, i.e., the morphological substrate of presynaptic inhibition, exert this filtering effect. Using confocal microscopy, axo-axonic synapses were demonstrated on segmental Ib collaterals. Most synapses were located on short preterminal and terminal branches. Using a simple compartmental model of myelinated axon, the primary afferent depolarisation (PAD), generated by such synapses, was predicted to reduce the amplitude of incoming action potentials by inactivating the sodium current, and this prediction was experimentally verified. A further theoretical work, relying on cable theory, suggests that the electrotonic structure of collaterals and the distribution of axo-axonic synapses allow large PADs (about 10 mV) to develop on some distal branches, which is likely to result in a substantial presynaptic inhibition. In addition, the electrotonic structure of group I collaterals is likely to prevent PAD from spreading to the whole arborisation. Such a non-uniform diffusion of the PAD accounts for differential presynaptic inhibition in intraspinal branches of the same fibre. Altogether, our experimental and theoretical works suggest that axo-axonic synapses can control the selective funnelling of sensory information toward relevant targets specified according to the motor task.


The Journal of Physiology | 1995

Heterogeneity of contraction-induced effects in neurons of the cat dorsal spinocerebellar tract.

Daniel Zytnicki; J. Lafleur; Nezha Kouchtir; Jean-François Perrier

1. Clarkes column neurons of the dorsal spinocerebellar tract (DSCT) were recorded intracellularly in anaesthetized cats during weak sustained contractions of triceps surae (TS) produced by direct electrical stimulation of the muscle. 2. Of 145 DSCT neurons, 77 (53%) were contraction sensitive suggesting that information about weak contraction of a limited number of muscles is widely distributed among DSCT neurons. Four types of effects were observed in individual neurons during TS contractions. 3. In the first group of 11 DSCT neurons (14% of the contraction‐sensitive cells), the effect was excitation persisting throughout the duration of contractions. These responses were ascribed to actions of afferents from contraction‐activated tendon organs. 4. In a second group of 15 neurons (20% of the contraction‐sensitive cells), quickly declining excitatory potentials were recorded during sustained TS contractions. By analogy with previous observations of contraction‐induced effects in motoneurons, the decline of excitation might be explained by contraction‐induced presynaptic inhibition of group I afferents in Clarkes column. 5. Declining inhibitions, resembling those previously observed in homonymous and synergic motoneurons, were recorded in 49% of contraction‐sensitive DSCT neurons. This appears in keeping with the fact that interneurons mediating Ib inhibition to motoneurons project axon collaterals to DSCT neurons. Presynaptic inhibition of Ib fibres might therefore cause parallel reductions of inhibitory potentials in motoneurons and in DSCT neurons. 6. In a final group of 13 neurons, mixed excitatory and inhibitory effects were observed during TS contractions. Such DSCT neurons might monitor the excitability of Ib interneurons by integration of information about input to and output from these neurons. 7. The non‐uniform patterns of DSCT responses to TS contractions suggest complex processing of information on ankle extensor activity in cerebellum. Phasic signalling of contraction onset is observed in many DSCT neurons while others carry messages about duration and strength of contraction.


Journal of Neurophysiology | 2015

Potassium currents dynamically set the recruitment and firing properties of F-type motoneurons in neonatal mice

Félix Leroy; Boris Lamotte d'Incamps; Daniel Zytnicki

In neonatal mice, fast- and slow-type motoneurons display different patterns of discharge. In response to a long liminal current pulse, the discharge is delayed up to several seconds in fast-type motoneurons and their firing frequency accelerates. In contrast, slow-type motoneurons discharge immediately, and their firing frequency decreases at the beginning of the pulse. Here, we identify the ionic currents that underlie the delayed firing of fast-type motoneurons. We find that the firing delay is caused by a combination of an A-like potassium current that transiently suppresses firing on a short time scale and a slowly-inactivating potassium current that inhibits the discharge over a much longer time scale. We then show how these intrinsic currents dynamically shape the discharge threshold and the frequency-input function of fast-type motoneurons. These currents contribute to the orderly recruitment of motoneurons in neonates and might play a role in the postnatal maturation of motor units.

Collaboration


Dive into the Daniel Zytnicki's collaboration.

Top Co-Authors

Avatar

Léna Jami

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Boris Lamotte d'Incamps

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marin Manuel

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nezha Kouchtir-Devanne

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lena H. Ting

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge