Daniela Berdnik
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Berdnik.
Nature Medicine | 2014
Saul A. Villeda; Kristopher E Plambeck; Jinte Middeldorp; Joseph M. Castellano; Kira I. Mosher; Jian Luo; Lucas K. Smith; Gregor Bieri; Karin Lin; Daniela Berdnik; Rafael Wabl; Joe Udeochu; Elizabeth G. Wheatley; Bende Zou; Danielle A. Simmons; Xinmin S. Xie; Frank M. Longo; Tony Wyss-Coray
As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function.
Cell | 2005
Gregory Emery; Andrea Hutterer; Daniela Berdnik; Bernd Mayer; Frederik Wirtz-Peitz; Marcos González Gaitán; Juergen A. Knoblich
Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments.
Developmental Cell | 2008
Oren Schuldiner; Daniela Berdnik; Jonathan Ma Levy; Joy S Wu; David Luginbuhl; Allison Camille Gontang; Liqun Luo
Developmental axon pruning is widely used to refine neural circuits. We performed a mosaic screen to identify mutations affecting axon pruning of Drosophila mushroom body gamma neurons. We constructed a modified piggyBac vector with improved mutagenicity and generated insertions in >2000 genes. We identified two cohesin subunits (SMC1 and SA) as being essential for axon pruning. The cohesin complex maintains sister-chromatid cohesion during cell division in eukaryotes. However, we show that the pruning phenotype in SMC1(-/-) clones is rescued by expressing SMC1 in neurons, revealing a postmitotic function. SMC1(-/-) clones exhibit reduced levels of the ecdysone receptor EcR-B1, a key regulator of axon pruning. The pruning phenotype is significantly suppressed by overexpressing EcR-B1 and is enhanced by a reduced dose of EcR, supporting a causal relationship. We also demonstrate a postmitotic role for SMC1 in dendrite targeting of olfactory projection neurons. We suggest that cohesin regulates diverse aspects of neuronal morphogenesis.
Development | 2004
Gregory S.X.E. Jefferis; Raj M. Vyas; Daniela Berdnik; Ariane Ramaekers; Reinhard F. Stocker; Nobuaki Tanaka; Kei Ito; Liqun Luo
In both insects and mammals, olfactory receptor neurons (ORNs) expressing specific olfactory receptors converge their axons onto specific glomeruli, creating a spatial map in the brain. We have previously shown that second order projection neurons (PNs) in Drosophila are prespecified by lineage and birth order to send their dendrites to one of ∼50 glomeruli in the antennal lobe. How can a given class of ORN axons match up with a given class of PN dendrites? Here, we examine the cellular and developmental events that lead to this wiring specificity. We find that, before ORN axon arrival, PN dendrites have already created a prototypic map that resembles the adult glomerular map, by virtue of their selective dendritic localization. Positional cues that create this prototypic dendritic map do not appear to be either from the residual larval olfactory system or from glial processes within the antennal lobe. We propose instead that this prototypic map might originate from both patterning information external to the developing antennal lobe and interactions among PN dendrites.
Nature Neuroscience | 2006
Haitao Zhu; Thomas Hummel; James C. Clemens; Daniela Berdnik; S. Lawrence Zipursky; Liqun Luo
In the olfactory system of Drosophila melanogaster, axons of olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons typically target 1 of ∼50 glomeruli. Dscam, an immunoglobulin superfamily protein, acts in ORNs to regulate axon targeting. Here we show that Dscam acts in projection neurons and local interneurons to control the elaboration of dendritic fields. The removal of Dscam selectively from projection neurons or local interneurons led to clumped dendrites and marked reduction in their dendritic field size. Overexpression of Dscam in projection neurons caused dendrites to be more diffuse during development and shifted their relative position in adulthood. Notably, the positional shift of projection neuron dendrites caused a corresponding shift of its partner ORN axons, thus maintaining the connection specificity. This observation provides evidence for a pre- and postsynaptic matching mechanism independent of precise glomerular positioning.
Neuron | 2007
Lora B. Sweeney; Africa Couto; Ya-Hui Chou; Daniela Berdnik; Barry J. Dickson; Liqun Luo; Takaki Komiyama
Axon-axon interactions have been implicated in neural circuit assembly, but the underlying mechanisms are poorly understood. Here, we show that in the Drosophila antennal lobe, early-arriving axons of olfactory receptor neurons (ORNs) from the antenna are required for the proper targeting of late-arriving ORN axons from the maxillary palp (MP). Semaphorin-1a is required for targeting of all MP but only half of the antennal ORN classes examined. Sema-1a acts nonautonomously to control ORN axon-axon interactions, in contrast to its cell-autonomous function in olfactory projection neurons. Phenotypic and genetic interaction analyses implicate PlexinA as the Sema-1a receptor in ORN targeting. Sema-1a on antennal ORN axons is required for correct targeting of MP axons within the antennal lobe, while interactions amongst MP axons facilitate their entry into the antennal lobe. We propose that Sema-1a/PlexinA-mediated repulsion provides a mechanism by which early-arriving ORN axons constrain the target choices of late-arriving axons.
The Journal of Neuroscience | 2006
Daniela Berdnik; Takahiro Chihara; Africa Couto; Liqun Luo
Neuronal wiring plasticity in response to experience or injury has been reported in many parts of the adult nervous system. For instance, visual or somatosensory cortical maps can reorganize significantly in response to peripheral lesions, yet a certain degree of stability is essential for neuronal circuits to perform their dedicated functions. Previous studies on lesion-induced neuronal reorganization have primarily focused on systems that use continuous neural maps. Here, we assess wiring plasticity in a discrete neural map represented by the adult Drosophila olfactory circuit. Using conditional expression of toxins, we genetically ablated specific classes of neurons and examined the consequences on their synaptic partners or neighboring classes in the adult antennal lobe. We find no alteration of connection specificity between olfactory receptor neurons (ORNs) and their postsynaptic targets, the projection neurons (PNs). Ablating an ORN class maintains PN dendrites within their glomerular borders, and ORN axons normally innervating an adjacent target do not expand. Likewise, ablating PN classes does not alter their partner ORN axon connectivity. Interestingly, an increase in the contralateral ORN axon terminal density occurs in response to the removal of competing ipsilateral ORNs. Therefore, plasticity in this circuit can occur but is confined within a glomerulus, thereby retaining the wiring specificity of ORNs and PNs. We conclude that, although adult olfactory neurons can undergo plastic changes in response to the loss of competition, the olfactory circuit overall is extremely stable in preserving segregated information channels in this discrete map.
Current Biology | 2008
Daniela Berdnik; Audrey P. Fan; Christopher J. Potter; Liqun Luo
The microRNA (miRNA) processing pathway produces miRNAs as posttranscriptional regulators of gene expression. The nuclear RNase III Drosha catalyzes the first processing step together with the dsRNA binding protein DGCR8/Pasha generating pre-miRNAs [1, 2]. The next cleavage employs the cytoplasmic RNase III Dicer producing miRNA duplexes [3, 4]. Finally, Argonautes are recruited with miRNAs into an RNA-induced silencing complex for mRNA recognition (Figure 1A). Here, we identify two members of the miRNA pathway, Pasha and Dicer-1, in a forward genetic screen for mutations that disrupt wiring specificity of Drosophila olfactory projection neurons (PNs). The olfactory system is built as discrete map of highly stereotyped neuronal connections [5, 6]. Each PN targets dendrites to a specific glomerulus in the antennal lobe and projects axons stereotypically into higher brain centers [7-9]. In selected PN classes, pasha and Dicer-1 mutants cause specific PN dendrite mistargeting in the antennal lobe and altered axonal terminations in higher brain centers. Furthermore, Pasha and Dicer-1 act cell autonomously in postmitotic neurons to regulate dendrite and axon targeting during development. However, Argonaute-1 and Argonaute-2 are dispensable for PN morphogenesis. Our findings suggest a role for the miRNA processing pathway in establishing wiring specificity in the nervous system.
Current Biology | 2005
Bernd Mayer; Gregory Emery; Daniela Berdnik; Frederik Wirtz-Peitz; Juergen A. Knoblich
In dividing Drosophila sensory organ precursor (SOP) cells, the fate determinant Numb and its associated adaptor protein Pon localize asymmetrically and segregate into the anterior daughter cell, where Numb influences cell fate by repressing Notch signaling. Asymmetric localization of both proteins requires the protein kinase aPKC and its substrate Lethal (2) giant larvae (Lgl). Because both Numb and Pon localization require actin and myosin, lateral transport along the cell cortex has been proposed as a possible mechanism for their asymmetric distribution. Here, we use quantitative live analysis of GFP-Pon and Numb-GFP fluorescence and fluorescence recovery after photobleaching (FRAP) to characterize the dynamics of Numb and Pon localization during SOP division. We demonstrate that Numb and Pon rapidly exchange between a cytoplasmic pool and the cell cortex and that preferential recruitment from the cytoplasm is responsible for their asymmetric distribution during mitosis. Expression of a constitutively active form of aPKC impairs membrane recruitment of GFP-Pon. This defect can be rescued by coexpression of nonphosphorylatable Lgl, indicating that Lgl is the main target of aPKC. We propose that a high-affinity binding site is asymmetrically distributed by aPKC and Lgl and is responsible for asymmetric localization of cell-fate determinants during mitosis.
Nature | 2017
Joseph M. Castellano; Kira I. Mosher; Rachelle J. Abbey; Alisha A. McBride; Michelle L. James; Daniela Berdnik; Jadon C. Shen; Bende Zou; Xinmin S. Xie; Martha Tingle; Izumi V. Hinkson; Martin S. Angst; Tony Wyss-Coray
Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation and downregulated in the aged brain. In addition to revitalizing other aged tissues, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction.