Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Boassa is active.

Publication


Featured researches published by Daniela Boassa.


Channels | 2011

Pannexin channels are not gap junction hemichannels

Gina E. Sosinsky; Daniela Boassa; Rolf Dermietzel; Heather S. Duffy; Dale W. Laird; Brian A. MacVicar; Christian C. Naus; Silvia Penuela; Eliana Scemes; David C. Spray; Roger J. Thompson; Hong Bo Zhao; Gerhard Dahl

Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins, and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term “hemichannels” to describe pannexin oligomers while others use the term “channels” instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus, have an assembly and functional state as gap junctional intercellular channels. Here, we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channels in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term “hemichannel” be discontinued within the pannexin literature.


Journal of Biological Chemistry | 2007

Pannexin1 Channels Contain a Glycosylation Site That Targets the Hexamer to the Plasma Membrane

Daniela Boassa; Cinzia Ambrosi; Gerhard Dahl; Guido M. Gaietta; Gina E. Sosinsky

Pannexins are newly discovered channel proteins expressed in many different tissues and abundantly in the vertebrate central nervous system. Based on membrane topology, folding and secondary structure prediction, pannexins are proposed to form gap junction-like structures. We show here that Pannexin1 forms a hexameric channel and reaches the cell surface but, unlike connexins, is N-glycosylated. Using site-directed mutagenesis we analyzed three putative N-linked glycosylation sites and examined the effects of each mutation on channel expression. We show for the first time that Pannexin1 is glycosylated at Asn-254 and that this residue is important for plasma membrane targeting. The glycosylation of Pannexin1 at its extracellular surface makes it unlikely that two oligomers could dock to form an intercellular channel. Ultrastructural analysis by electron microscopy confirmed that Pannexin1 junctional areas do not appear as canonical gap junctions. Rather, Pannexin1 channels are distributed throughout the plasma membrane. We propose that N-glycosylation of Pannexin1 could be a significant mechanism for regulating the trafficking of these membrane proteins to the cell surface in different tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Transcellular degradation of axonal mitochondria.

Chung Ha O Davis; Keun-Young Kim; Eric A. Bushong; Elizabeth A. Mills; Daniela Boassa; Tiffany Shih; Mira Kinebuchi; Sebastien Phan; Yi Zhou; Nathan A. Bihlmeyer; Judy V. Nguyen; Yunju Jin; Mark H. Ellisman; Nicholas Marsh-Armstrong

Significance Mitochondria are organelles that perform many essential functions, including providing the energy to cells. Cells remove damaged mitochondria through a process called mitophagy. Mitophagy is considered a subset of a process called autophagy, by which damaged organelles are enwrapped and delivered to lysosomes for degradation. Implicit in the categorization of mitophagy as a subset of autophagy, which means “self-eating,” is the assumption that a cell degrades its own mitochondria. However, we show here that in a location called the optic nerve head, large numbers of mitochondria are shed from neurons to be degraded by the lysosomes of adjoining glial cells. This finding calls into question the assumption that a cell necessarily degrades its own organelles. It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.


Journal of Biological Chemistry | 2010

Pannexin1 and Pannexin2 Channels Show Quaternary Similarities to Connexons and Different Oligomerization Numbers from Each Other

Cinzia Ambrosi; Oliver Gassmann; Jennifer Pranskevich; Daniela Boassa; Amy Smock; Junjie Wang; Gerhard Dahl; Claudia Steinem; Gina E. Sosinsky

Pannexins are homologous to innexins, the invertebrate gap junction family. However, mammalian pannexin1 does not form canonical gap junctions, instead forming hexameric oligomers in single plasma membranes and intracellularly. Pannexin1 acts as an ATP release channel, whereas less is known about the function of Pannexin2. We purified cellular membranes isolated from MDCK cells stably expressing rat Pannexin1 or Pannexin2 and identified pannexin channels (pannexons) in single membranes by negative stain and immunogold labeling. Protein gel and Western blot analysis confirmed Pannexin1 (Panx1) or Pannexin2 (Panx2) as the channel-forming proteins. We expressed and purified Panx1 and Panx2 using a baculovirus Sf9 expression system and obtained doughnut-like structures similar to those seen previously in purified connexin hemichannels (connexons) and mammalian membranes. Purified pannexons were comparable in size and overall appearance to Connexin46 and Connexin50 connexons. Pannexons and connexons were further analyzed by single-particle averaging for oligomer and pore diameters. The oligomer diameter increased with increasing monomer molecular mass, and we found that the measured oligomeric pore diameter for Panxs was larger than for Connexin26. Panx1 and Panx2 formed active homomeric channels in Xenopus oocytes and in vitro vesicle assays. Cross-linking and native gels of purified homomeric full-length and a C-terminal Panx2 truncation mutant showed a banding pattern more consistent with an octamer. We purified Panx1/Panx2 heteromeric channels and found that they were unstable over time, possibly because Panx1 and Panx2 homomeric pannexons have different monomer sizes and oligomeric symmetry from each other.


Cell Communication and Adhesion | 2008

TRAFFICKING DYNAMICS OF GLYCOSYLATED PANNEXIN1 PROTEINS

Daniela Boassa; Gerhard Dahl; Gina E. Sosinsky

Pannexins are mammalian orthologs of innexins and have a predicted topological folding pattern similar to that of connexins, except they are glycosylated. Rat pannexin1 is glycosylated at N254 and this residue is important for plasma membrane targeting. Here we demonstrate that cell surface expression levels of the rat pannexin1 N254Q mutant are rescued by coexpression with the wild-type protein. In paired Xenopus oocytes, the functional effect of this rescue is inconsequential; however, cell surface deglycosylation by PNGase F significantly enhanced functional gap junction formation. In mammalian cells, wild-type oligomers traffic at a slower rate than Myc-or tetracysteine domain–tagged versions, a behavior opposite to that of tagged connexins. The temporal differences of Panx1 trafficking correlate with spatial differences of intracellular localizations induced by Golgi blockage by Brefeldin-A or glycosylation prevention by tunicamycin. Therefore, Panx1 has kinetics and dynamics that make it unique to serve distinct functions separate from connexin-based channels.


Human Molecular Genetics | 2012

LRRK2 Parkinson disease mutations enhance its microtubule association

Lauren R. Kett; Daniela Boassa; Cherry Cheng Ying Ho; Hardy J. Rideout; Junru Hu; Masako Terada; Mark H. Ellisman; William T. Dauer

Dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic causes of Parkinson disease (PD) and genome-wide association studies identify LRRK2 sequence variants as risk factors for sporadic PD. Intact kinase function appears critical for the toxicity of LRRK2 PD mutants, yet our understanding of how LRRK2 causes neurodegeneration remains limited. We find that most LRRK2 PD mutants abnormally enhance LRRK2 oligomerization, causing it to form filamentous structures in transfections of cell lines or primary neuronal cultures. Strikingly, ultrastructural analyses, including immuno-electron microscopy and electron microscopic tomography, demonstrate that these filaments consist of LRRK2 recruited onto part of the cellular microtubule network in a well-ordered, periodic fashion. Like LRRK2-related neurodegeneration, microtubule association requires intact kinase function and the WD40 domain, potentially linking microtubule binding and neurodegeneration. Our observations identify a novel effect of LRRK2 PD mutations and highlight a potential role for microtubules in the pathogenesis of LRRK2-related neurodegeneration.


The Journal of Neuroscience | 2013

Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis.

Daniela Boassa; Monica L. Berlanga; Mary Ann Yang; Masako Terada; Junru Hu; Eric A. Bushong; Minju Hwang; Eliezer Masliah; Julia M. George; Mark H. Ellisman

Modifications to the gene encoding human α-synuclein have been linked to the development of Parkinsons disease. The highly conserved structure of α-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human α-synuclein, including new genetic tags developed for correlated light microscopy and electron microscopy (the tetracysteine-biarsenical labeling system or the new fluorescent protein for electron microscopy, MiniSOG), we determined the distribution of α-synuclein when overexpressed in primary neurons at supramolecular and cellular scales in three dimensions (3D). We observed specific association of α-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, α-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice overexpressing human α-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. Three-dimensional electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulovesicular structures similar to what we observed in vitro. We propose that α-synuclein overexpression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that α-synuclein is involved in processes associated with the sorting, channeling, packaging, and transport of synaptic material destined for degradation.


The Journal of Neuroscience | 2006

Ion Channel Function of Aquaporin-1 Natively Expressed in Choroid Plexus

Daniela Boassa; W. Daniel Stamer; Andrea J. Yool

Aquaporins are known as water channels; however, an additional ion channel function has been observed for several including aquaporin-1 (AQP1). Using primary cultures of rat choroid plexus, a brain tissue that secretes CSF and abundantly expresses AQP1, we confirmed the ion channel function of AQP1 and assessed its functional relevance. The cGMP-gated cationic conductance associated with AQP1 is activated by an endogenous receptor guanylate cyclase for atrial natriuretic peptide (ANP). Fluid transport assays with confluent polarized choroid plexus cultures showed that AQP1 current activation by 4.5 μm ANP decreases the normal basal-to-apical fluid transport in the choroid plexus; conversely, AQP1 block with 500 μm Cd2+ restores fluid transport. The cGMP-gated conductance in the choroid plexus is lost with targeted knockdown of AQP1 by small interfering RNA (siRNA), as confirmed by immunocytochemistry and whole-cell patch electrophysiology of transiently transfected cells identified by enhanced green fluorescent protein. The properties of the current (permeability to Na+, K+, TEA+, and Cs+; voltage insensitivity; and dependence on cGMP) matched properties characterized previously in AQP1-expressing oocytes. Background K+ and Cl− currents in the choroid plexus were dissected from AQP1 currents using Cs-methanesulfonate recording salines; the background currents recorded in physiological salines were not affected by AQP1–siRNA treatment. These results confirm that AQP1 can function as both a water channel and a gated ion channel. The conclusion that the AQP1-associated cation current contributes to modulating CSF production resolves a lingering concern as to whether an aquaporin ionic conductance can have a physiologically relevant function.


Traffic | 2010

Trafficking and Recycling of the Connexin43 Gap Junction Protein during Mitosis

Daniela Boassa; Joell L. Solan; Adrian Papas; Perry J. Thornton; Paul D. Lampe; Gina E. Sosinsky

During the cell cycle, gap junction communication, morphology and distribution of connexin43 (Cx43)‐containing structures change dramatically. As cells round up in mitosis, Cx43 labeling is mostly intracellular and intercellular coupling is reduced. We investigated Cx43 distributions during mitosis both in endogenous and exogenous expressing cells using optical pulse‐chase labeling, correlated light and electron microscopy, immunocytochemistry and biochemical analysis. Time‐lapse imaging of green fluorescent protein (GFP)/tetracysteine tagged Cx43 (Cx43‐GFP‐4C) expressing cells revealed an early disappearance of gap junctions, progressive accumulation of Cx43 in cytoplasmic structures, and an unexpected subset pool of protein concentrated in the plasma membrane surrounding the midbody region in telophase followed by rapid reappearance of punctate plaques upon mitotic exit. These distributions were also observed in immuno‐labeled endogenous Cx43‐expressing cells. Photo‐oxidation of ReAsH‐labeled Cx43‐GFP‐4C cells in telophase confirmed that Cx43 is distributed in the plasma membrane surrounding the midbody as apparent connexons and in cytoplasmic vesicles. We performed optical pulse‐chase labeling and single label time‐lapse imaging of synchronized cells stably expressing Cx43 with internal tetracysteine domains through mitosis. In late telophase, older Cx43 is segregated mainly to the plasma membrane while newer Cx43 is intracellular. This older population nucleates new gap junctions permitting rapid resumption of communication upon mitotic exit.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation

Elena Dolmatova; Gaelle Spagnol; Daniela Boassa; Jennifer R. Baum; Kimberly Keith; Cinzia Ambrosi; Maria I. Kontaridis; Paul L. Sorgen; Gina E. Sosinsky; Heather S. Duffy

Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity. ATP has been shown in noncardiac systems to initiate fibroblast activation. Therefore, we propose that ATP release through Panx1 channels and subsequent fibroblast activation in the heart drives the development of fibrosis in the heart following myocardial infarction. We identified for the first time that Panx1 is localized within sarcolemmal membranes of canine cardiac myocytes where it directly interacts with the postsynaptic density 95/Drosophila disk large/zonula occludens-1-containing scaffolding protein synapse-associated protein 97 via its carboxyl terminal domain (amino acids 300-357). Induced ischemia rapidly increased glycosylation of Panx1, resulting in increased trafficking to the plasma membrane as well as increased interaction with synapse-associated protein 97. Cellular stress enhanced ATP release from myocyte Panx1 channels, which, in turn, causes fibroblast transformation to the activated myofibroblast phenotype via activation of the MAPK and p53 pathways, both of which are involved in the development of cardiac fibrosis. ATP release through Panx1 channels in cardiac myocytes during ischemia may be an early paracrine event leading to profibrotic responses to ischemic cardiac injury.

Collaboration


Dive into the Daniela Boassa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastien Phan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cinzia Ambrosi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junru Hu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge