Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Deerinck is active.

Publication


Featured researches published by Thomas J. Deerinck.


Nature | 2005

STIM1 is a Ca2+ Sensor That Activates CRAC Channels and Migrates from the Ca2+ Store to the Plasma Membrane

Shenyuan L. Zhang; Ying Yu; Jack Roos; J. Ashot Kozak; Thomas J. Deerinck; Mark H. Ellisman; Kenneth A. Stauderman; Michael D. Cahalan

As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.


Cell | 1988

The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein

Mordechai Bodner; José-Luis Castriilo; Lars E. Theill; Thomas J. Deerinck; Mark H. Ellisman; Michael Karin

Growth hormone factor 1 (GHF-1) is a pituitary-specific transcription factor that plays a critical role in cell type-specific expression of the growth hormone (GH) gene. Here, we describe the isolation of bovine and rat GHF-1 cDNA clones. These cDNAs encode proteins whose molecular mass, 33K, is identical to purified GHF-1 and whose sequence agrees with a partial GHF-1 peptide sequence. The predicted GHF-1 sequence contains a region, near its C-terminus, that exhibits considerable similarity to a homeobox consensus sequence. DNAase I footprinting with bacterially expressed fusion protein containing a fragment of GHF-1 encompassing the homeobox indicates that this region of the protein functions as its DNA binding domain. Expression of GHF-1 is restricted to cells of the somatotropic lineage in the pituitary. This remarkable specificity of GHF-1 expression correlates with the selective transcription of its target, the GH gene. Other mammalian homeobox-containing proteins may function similarly as transcription factors controlling cell type-specific expression in other locations.


PLOS Biology | 2011

A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms

Xiaokun Shu; Varda Lev-Ram; Thomas J. Deerinck; Yingchuan Qi; Ericka B. Ramko; Michael W. Davidson; Yishi Jin; Mark H. Ellisman; Roger Y. Tsien

Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce “miniSOG” (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.


Nature Neuroscience | 2004

Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors.

William Y. Ju; Wade Morishita; Jennifer Tsui; Guido M. Gaietta; Thomas J. Deerinck; Stephen R. Adams; Craig C. Garner; Roger Y. Tsien; Mark H. Ellisman; Robert C. Malenka

Regulation of AMPA receptor (AMPAR) trafficking is important for neural plasticity. Here we examined the trafficking and synthesis of the GluR1 and GluR2 subunits using ReAsH-EDT2 and FlAsH-EDT2 staining. Activity blockade of rat cultured neurons increased dendritic GluR1, but not GluR2, levels. Examination of transected dendrites revealed that both AMPAR subunits were synthesized in dendrites and that activity blockade enhanced dendritic synthesis of GluR1 but not GluR2. In contrast, acute pharmacological manipulations increased dendritic synthesis of both subunits. AMPARs synthesized in dendrites were inserted into synaptic plasma membranes and, after activity blockade, the electrophysiological properties of native synaptic AMPARs changed in the manner predicted by the imaging experiments. In addition to providing a novel mechanism for synaptic modifications, these results point out the advantages of using FlAsH-EDT2 and ReAsH-EDT2 for studying the trafficking of newly synthesized proteins in local cellular compartments such as dendrites.


Science | 2016

Design and synthesis of a minimal bacterial genome

Hutchison Ca rd; Ray-Yuan Chuang; Vladimir N. Noskov; Nacyra Assad-Garcia; Thomas J. Deerinck; Mark H. Ellisman; Gill J; Kannan K; Bogumil J. Karas; Li Ma; Pelletier Jf; Zhi-Qing Qi; Richter Ra; Elizabeth A. Strychalski; Lijie Sun; Yo Suzuki; Tsvetanova B; Kim S. Wise; Hamilton O. Smith; John I. Glass; Chuck Merryman; Daniel G. Gibson; Venter Jc

Designing and building a minimal genome A goal in biology is to understand the molecular and biological function of every gene in a cell. One way to approach this is to build a minimal genome that includes only the genes essential for life. In 2010, a 1079-kb genome based on the genome of Mycoplasma mycoides (JCV-syn1.0) was chemically synthesized and supported cell growth when transplanted into cytoplasm. Hutchison III et al. used a design, build, and test cycle to reduce this genome to 531 kb (473 genes). The resulting JCV-syn3.0 retains genes involved in key processes such as transcription and translation, but also contains 149 genes of unknown function. Science, this issue p. 10.1126/science.aad6253 Cycles of design, building, and testing produced a 531-kilobase genome comprising 473 genes. INTRODUCTION In 1984, the simplest cells capable of autonomous growth, the mycoplasmas, were proposed as models for understanding the basic principles of life. In 1995, we reported the first complete cellular genome sequences (Haemophilus influenza, 1815 genes, and Mycoplasma genitalium, 525 genes). Comparison of these sequences revealed a conserved core of about 250 essential genes, much smaller than either genome. In 1999, we introduced the method of global transposon mutagenesis and experimentally demonstrated that M. genitalium contains many genes that are nonessential for growth in the laboratory, even though it has the smallest genome known for an autonomously replicating cell found in nature. This implied that it should be possible to produce a minimal cell that is simpler than any natural one. Whole genomes can now be built from chemically synthesized oligonucleotides and brought to life by installation into a receptive cellular environment. We have applied whole-genome design and synthesis to the problem of minimizing a cellular genome. RATIONALE Since the first genome sequences, there has been much work in many bacterial models to identify nonessential genes and define core sets of conserved genetic functions, using the methods of comparative genomics. Often, more than one gene product can perform a particular essential function. In such cases, neither gene will be essential, and neither will necessarily be conserved. Consequently, these approaches cannot, by themselves, identify a set of genes that is sufficient to constitute a viable genome. We set out to define a minimal cellular genome experimentally by designing and building one, then testing it for viability. Our goal is a cell so simple that we can determine the molecular and biological function of every gene. RESULTS Whole-genome design and synthesis were used to minimize the 1079–kilobase pair (kbp) synthetic genome of M. mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology in combination with limited transposon mutagenesis data, failed to produce a viable cell. Improved transposon mutagenesis methods revealed a class of quasi-essential genes that are needed for robust growth, explaining the failure of our initial design. Three more cycles of design, synthesis, and testing, with retention of quasi-essential genes, produced JCVI-syn3.0 (531 kbp, 473 genes). Its genome is smaller than that of any autonomously replicating cell found in nature. JCVI-syn3.0 has a doubling time of ~180 min, produces colonies that are morphologically similar to those of JCVI-syn1.0, and appears to be polymorphic when examined microscopically. CONCLUSION The minimal cell concept appears simple at first glance but becomes more complex upon close inspection. In addition to essential and nonessential genes, there are many quasi-essential genes, which are not absolutely critical for viability but are nevertheless required for robust growth. Consequently, during the process of genome minimization, there is a trade-off between genome size and growth rate. JCVI-syn3.0 is a working approximation of a minimal cellular genome, a compromise between small genome size and a workable growth rate for an experimental organism. It retains almost all the genes that are involved in the synthesis and processing of macromolecules. Unexpectedly, it also contains 149 genes with unknown biological functions, suggesting the presence of undiscovered functions that are essential for life. JCVI-syn3.0 is a versatile platform for investigating the core functions of life and for exploring whole-genome design. Four design-build-test cycles produced JCVI-syn3.0. (A) The cycle for genome design, building by means of synthesis and cloning in yeast, and testing for viability by means of genome transplantation. After each cycle, gene essentiality is reevaluated by global transposon mutagenesis. (B) Comparison of JCVI-syn1.0 (outer blue circle) with JCVI-syn3.0 (inner red circle), showing the division of each into eight segments. The red bars inside the outer circle indicate regions that are retained in JCVI-syn3.0


Nature Methods | 2005

Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots

Ben N. G. Giepmans; Thomas J. Deerinck; Benjamin Smarr; Ying Jones; Mark H. Ellisman

The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution of the electron microscope. Here we report the application of small nanocrystals (Quantum dots; QDs) to specifically and efficiently label multiple distinct endogenous proteins. QDs are both fluorescent and electron dense, facilitating their use for correlated microscopic analysis. Furthermore, QDs can be discriminated optically by their emission wavelength and physically by size, making them invaluable for multilabeling analysis. We developed pre-embedding labeling criteria using QDs that allows optimization at the light level, before continuing with electron microscopy (EM). We provide examples of double and triple immunolabeling using light, electron and correlated microscopy in rat cells and mouse tissue. We conclude that QDs aid precise high-throughput determination of protein distribution.


Nature Communications | 2012

Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation

Dimitrios Davalos; Jae Kyu Ryu; Mario Merlini; Kim M. Baeten; Natacha Le Moan; Mark A. Petersen; Thomas J. Deerinck; Dimitri S. Smirnoff; Catherine Bedard; Hiroyuki Hakozaki; Sara G. Murray; Jennie B. Ling; Hans Lassmann; Jay L. Degen; Mark H. Ellisman; Katerina Akassoglou

Blood-brain barrier disruption, microglial activation and neurodegeneration are hallmarks of multiple sclerosis. However, the initial triggers that activate innate immune responses and their role in axonal damage remain unknown. Here we show that the blood protein fibrinogen induces rapid microglial responses toward the vasculature and is required for axonal damage in neuroinflammation. Using in vivo two-photon microscopy, we demonstrate that microglia form perivascular clusters before myelin loss or paralysis onset and that, of the plasma proteins, fibrinogen specifically induces rapid and sustained microglial responses in vivo. Fibrinogen leakage correlates with areas of axonal damage and induces reactive oxygen species release in microglia. Blocking fibrin formation with anticoagulant treatment or genetically eliminating the fibrinogen binding motif recognized by the microglial integrin receptor CD11b/CD18 inhibits perivascular microglial clustering and axonal damage. Thus, early and progressive perivascular microglial clustering triggered by fibrinogen leakage upon blood-brain barrier disruption contributes to axonal damage in neuroinflammatory disease.


Nature Methods | 2015

Directed evolution of APEX2 for electron microscopy and proximity labeling

Stephanie S Lam; Jeffrey Daniel Martell; Kimberli J. Kamer; Thomas J. Deerinck; Mark H. Ellisman; Vamsi K. Mootha; Alice Y. Ting

APEX is an engineered peroxidase that functions as an electron microscopy tag and a promiscuous labeling enzyme for live-cell proteomics. Because limited sensitivity precludes applications requiring low APEX expression, we used yeast-display evolution to improve its catalytic efficiency. APEX2 is far more active in cells, enabling the use of electron microscopy to resolve the submitochondrial localization of calcium uptake regulatory protein MICU1. APEX2 also permits superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins.


Developmental Cell | 2003

ER-to-Golgi Carriers Arise through Direct En Bloc Protrusion and Multistage Maturation of Specialized ER Exit Domains

Alexander A. Mironov; Galina V. Beznoussenko; Alvar Trucco; Pietro Lupetti; Jeffrey D. Smith; Willie J. C. Geerts; Abraham J. Koster; Koert N.J. Burger; Maryann E. Martone; Thomas J. Deerinck; Mark H. Ellisman; Alberto Luini

Protein transport between the ER and the Golgi in mammalian cells occurs via large pleiomorphic carriers, and most current models suggest that these are formed by the fusion of small ER-derived COPII vesicles. We have examined the dynamics and structural features of these carriers during and after their formation from the ER by correlative video/light electron microscopy and tomography. We found that saccular carriers containing either the large supramolecular cargo procollagen or the small diffusible cargo protein VSVG arise through cargo concentration and direct en bloc protrusion of specialized ER domains in the vicinity of COPII-coated exit sites. This formation process is COPII dependent but does not involve budding and fusion of COPII-dependent vesicles. Fully protruded saccules then move centripetally, evolving into one of two types of carriers (with distinct kinetic and structural features). These findings provide an alternative framework for analysis of ER-to-Golgi traffic.


Cell | 1993

Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone

Peter A. Takizawa; Jennifer K. Yucel; Barbara Veit; D. John Faulkner; Thomas J. Deerinck; Gabriel Soto; Mark H. Ellisman; Vivek Malhotra

We have identified a novel natural metabolite, ilimaquinone (IQ), from sea sponges that causes Golgi membranes to break down completely in vivo into small vesicular structures (called vesiculated Golgi membranes [VGMs]). Under these conditions, transport of newly synthesized proteins from endoplasmic reticulum (ER) to the cis-Golgi-derived VGMs is unaffected; however, further transport along the secretory pathway is blocked. Upon removal of the drug, VGMs reassemble rapidly into a Golgi complex, and protein transport is restored. By employing a cell-free system that reconstitutes vesicular transport between successive Golgi cisternae, we provide evidence that the inhibition of protein transport by IQ is specifically due to an inhibition of transport vesicle formation. In addition, like brefeldin A (BFA), IQ treatment prevents the association of beta-COP and ADP-ribosylation factor to the Golgi membranes; however, unlike BFA treatment, there is no retrograde transport of Golgi enzymes into ER.

Collaboration


Dive into the Thomas J. Deerinck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Y. Tsien

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Y. Ting

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniela Boassa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastien Phan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge