Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Brina is active.

Publication


Featured researches published by Daniela Brina.


Cellular and Molecular Life Sciences | 2013

RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency

Viviana Volta; Anne Beugnet; Simone Gallo; Laura Magri; Daniela Brina; Elisa Pesce; Piera Calamita; Francesca Sanvito; Stefano Biffo

The receptor for activated C-kinase 1 (RACK1) is a conserved structural protein of 40S ribosomes. Strikingly, deletion of RACK1 in yeast homolog Asc1 is not lethal. Mammalian RACK1 also interacts with many nonribosomal proteins, hinting at several extraribosomal functions. A knockout mouse for RACK1 has not previously been described. We produced the first RACK1 mutant mouse, in which both alleles of RACK1 gene are defective in RACK1 expression (ΔF/ΔF), in a pure C57 Black/6 background. In a sample of 287 pups, we observed no ΔF/ΔF mice (72 expected). Dissection and genotyping of embryos at various stages showed that lethality occurs at gastrulation. Heterozygotes (ΔF/+) have skin pigmentation defects with a white belly spot and hypopigmented tail and paws. ΔF/+ have a transient growth deficit (shown by measuring pup size at P11). The pigmentation deficit is partly reverted by p53 deletion, whereas the lethality is not. ΔF/+ livers have mild accumulation of inactive 80S ribosomal subunits by polysomal profile analysis. In ΔF/+ fibroblasts, protein synthesis response to extracellular and pharmacological stimuli is reduced. These results highlight the role of RACK1 as a ribosomal protein converging signaling to the translational apparatus.


Nature Communications | 2015

eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription

Daniela Brina; Annarita Miluzio; Sara Ricciardi; Kim Clarke; Peter K. Davidsen; Gabriella Viero; Toma Tebaldi; Nina Offenhäuser; Jan Rozman; Birgit Rathkolb; Susanne Neschen; Martin Klingenspor; Eckhard Wolf; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabé de Angelis; Alessandro Quattrone; Francesco Falciani; Stefano Biffo

Insulin regulates glycaemia, lipogenesis and increases mRNA translation. Cells with reduced eukaryotic initiation factor 6 (eIF6) do not increase translation in response to insulin. The role of insulin-regulated translation is unknown. Here we show that reduction of insulin-regulated translation in mice heterozygous for eIF6 results in normal glycaemia, but less blood cholesterol and triglycerides. eIF6 controls fatty acid synthesis and glycolysis in a cell autonomous fashion. eIF6 acts by exerting translational control of adipogenic transcription factors like C/EBPβ, C/EBPδ and ATF4 that have G/C rich or uORF sequences in their 5′ UTR. The outcome of the translational activation by eIF6 is a reshaping of gene expression with increased levels of lipogenic and glycolytic enzymes. Finally, eIF6 levels modulate histone acetylation and amounts of rate-limiting fatty acid synthase (Fasn) mRNA. Since obesity, type 2 diabetes, and cancer require a Fasn-driven lipogenic state, we propose that eIF6 could be a therapeutic target for these diseases.


Biochimica et Biophysica Acta | 2015

eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression

Daniela Brina; Annarita Miluzio; Sara Ricciardi; Stefano Biffo

Here we discuss the function of eukaryotic initiation factor 6 (eIF6; Tif6 in yeast). eIF6 binds 60S ribosomal subunits and blocks their joining to 40S. In this context, we propose that eIF6 impedes unproductive 80S formation, namely, the formation of 80S subunits without mRNA. Genetic evidence shows that eIF6 has a dual function: in yeast and mammals, nucleolar eIF6 is necessary for the biogenesis of 60S subunits. In mammals, cytoplasmic eIF6 is required for insulin and growth factor-stimulated translation. In contrast to other translation factors, eIF6 activity is not under mTOR control. The physiological significance of eIF6 impacts on cancer and on inherited Shwachman-Bodian-Diamond syndrome. eIF6 is overexpressed in specific human tumors. In a murine model of lymphomagenesis, eIF6 depletion leads to a striking increase of survival, without adverse effects. Shwachman-Bodian-Diamond syndrome is caused by loss of function of SBDS protein. In yeast, point mutations of Tif6, the yeast homolog of eIF6, rescue the quasi-lethal effect due to the loss of the SBDS homolog, Sdo1. We propose that eIF6 is a node regulator of ribosomal function and predict that prioritizing its pharmacological targeting will be of benefit in cancer and Shwachman-Bodian-Diamond syndrome. This article is part of a Special Issue entitled: Translation and Cancer.


Cell Cycle | 2011

Translational control by 80S formation and 60S availability: the central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis.

Daniela Brina; Stefano Grosso; Annarita Miluzio; Stefano Biffo

Ribosome biogenesis and translation can be simplified as the processes of generating ribosomes and their use for decoding mRNA into a protein. Ribosome biogenesis has been efficiently studied in unicellular organisms like the budding yeast, allowing us a deep and basic knowledge of this process in growing cells. Translation has been modeled in vitro and in unicellular organisms. These studies have given us an important insight into the mechanisms and evolutionarily conserved aspects of ribosome biology. However, we advocate the need of the direct study of these processes in multicellular organisms. Analysis of ribosome biogenesis and translation in vivo in Metazoa and mammalian models is emerging and unveils the unexpected consequences of perturbed ribosome biogenesis and translation. Here, we will describe how one factor, eIF6, plays a crucial role both in the generation of the large ribosomal subunit and its availability for translation. From there, we will make specific conclusions on the physiological relevance of eIF6 in 80S formation, cell cycle progression and disease, raising the point that the control of gene expression may occur at the unexpected level of the large ribosomal subunit. In the future, the modulation of eIF6 binding to the 60S may be pharmacologically exploited to reduce the growth of cancer cells or ameliorate the phenotype of SDS syndrome.


PLOS ONE | 2011

Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1

Stefano Grosso; Elisa Pesce; Daniela Brina; Anne Beugnet; Fabrizio Loreni; Stefano Biffo

Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next.


Oncotarget | 2015

Expression and activity of eIF6 trigger Malignant Pleural Mesothelioma growth in vivo

Annarita Miluzio; Stefania Oliveto; Elisa Pesce; Luciano Mutti; Bruno Murer; Stefano Grosso; Sara Ricciardi; Daniela Brina; Stefano Biffo

eIF6 is an antiassociation factor that regulates the availability of active 80S. Its activation is driven by the RACK1/PKCβ axis, in a mTORc1 independent manner. We previously described that eIF6 haploinsufficiency causes a striking survival in the Eμ-Myc mouse lymphoma model, with lifespans extended up to 18 months. Here we screen for eIF6 expression in human cancers. We show that Malignant Pleural Mesothelioma tumors (MPM) and a MPM cell line (REN cells) contain high levels of hyperphosphorylated eIF6. Enzastaurin is a PKC beta inhibitor used in clinical trials. We prove that Enzastaurin treatment decreases eIF6 phosphorylation rate, but not eIF6 protein stability. The growth of REN, in vivo, and metastasis are reduced by either Enzastaurin treatment or eIF6 shRNA. Molecular analysis reveals that eIF6 manipulation affects the metabolic status of malignant mesothelioma cells. Less glycolysis and less ATP content are evident in REN cells depleted for eIF6 or treated with Enzastaurin (Anti-Warburg effect). We propose that eIF6 is necessary for malignant mesothelioma growth, in vivo, and can be targeted by kinase inhibitors.


Biochimica et Biophysica Acta | 2010

JNK inhibition arrests cotranslational degradation

Valentina Gandin; Daniela Brina; Pier Carlo Marchisio; Stefano Biffo

Adhesion to fibronectin stimulates protein synthesis (translation) of fibroblasts. Protein synthesis stimulation is dependent from the activation of beta(1)-integrin. beta(1)-Integrin elicits a PI3K cascade that modulates eIF4F (eukaryotic initiation factor 4F) complex formation. In the attempt to further dissect elements of the PI3K cascade that might be responsible for fibronectin-stimulated translation, we used pharmacological inhibitors of known kinases. We found that JNK inhibition, by SP600125 treatment, increased (35)S-methionine incorporation. Paradoxically, the increase in methionine incorporation was associated to a reduction of initiation of translation. These data imply that, during the adhesion of fibroblasts to fibronectin, conspicuous protein degradation occurs. Indeed, we found that inhibition of the proteasome by MG132 also increased methionine incorporation. Cotranslational degradation depended on PI3K activation. In spite of this, serum promoted translation, but not cotranslational degradation. The crosstalk between translation and degradation was further analyzed by studying the phosphorylation of initiation factors. Briefly, inhibition of JNK leads to eIF2alpha phosphorylation, which may account for the decrease in initiation of translation. In conclusion, beta(1)-integrin-activated translation causes the synthesis of short-lived proteins, whose degradation is controlled by the JNK pathway. We hypothesize that JNK is a general regulator of cotranslational degradation.


Developmental and Comparative Immunology | 2017

High levels of eukaryotic Initiation Factor 6 (eIF6) are required for immune system homeostasis and for steering the glycolytic flux of TCR-stimulated CD4+ T cells in both mice and humans

Nicola Manfrini; Sara Ricciardi; Annarita Miluzio; Maya Fedeli; Alessandra Scagliola; Simone Gallo; Daniela Brina; Thure Adler; Dirk H. Busch; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabě de Angelis; Stefano Biffo

Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4+ Effector Memory T cells. In human CD4+ T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4+ T cells, eIF6 levels control interferon-γ (IFN-γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery.


Journal of Thrombosis and Haemostasis | 2015

Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation

Sara Ricciardi; Annarita Miluzio; Daniela Brina; Kim Clarke; M. Bonomo; R. Aiolfi; L. G. Guidotti; Francesco Falciani; Stefano Biffo

Ribosomopathies constitute a class of inherited disorders characterized by defects in ribosome biogenesis and function. Classically, bone marrow (BM) failure is a clinical symptom shared between these syndromes, including Shwachman–Bodian–Diamond syndrome (SBDS). Eukaryotic translation initiation factor 6 (eIF6) is a critical translation factor that rescues the quasilethal effect of the loss of the SBDS protein.


Biochemical Society Transactions | 2016

Translational control by mTOR-independent routes: how eIF6 organizes metabolism

Annarita Miluzio; Sara Ricciardi; Nicola Manfrini; Roberta Alfieri; Stefania Oliveto; Daniela Brina; Stefano Biffo

Over the past few years, there has been a growing interest in the interconnection between translation and metabolism. Important oncogenic pathways, like those elicited by c-Myc transcription factor and mTOR kinase, couple the activation of the translational machinery with glycolysis and fatty acid synthesis. Eukaryotic initiation factor 6 (eIF6) is a factor necessary for 60S ribosome maturation. eIF6 acts also as a cytoplasmic translation initiation factor, downstream of growth factor stimulation. eIF6 is up-regulated in several tumor types. Data on mice models have demonstrated that eIF6 cytoplasmic activity is rate-limiting for Myc-induced lymphomagenesis. In spite of this, eIF6 is neither transcriptionally regulated by Myc, nor post-transcriptionally regulated by mTOR. eIF6 stimulates a glycolytic and fatty acid synthesis program necessary for tumor growth. eIF6 increases the translation of transcription factors necessary for lipogenesis, such as CEBP/β, ATF4 and CEBP/δ. Insulin stimulation leads to an increase in translation and fat synthesis blunted by eIF6 deficiency. Paradoxycally, long-term inhibition of eIF6 activity increases insulin sensitivity, suggesting that the translational activation observed upon insulin and growth factors stimulation acts as a feed-forward mechanism regulating lipid synthesis. The data on the role that eIF6 plays in cancer and in insulin sensitivity make it a tempting pharmacological target for cancers and metabolic diseases. We speculate that eIF6 inhibition will be particularly effective especially when mTOR sensitivity to rapamycin is abrogated by RAS mutations.

Collaboration


Dive into the Daniela Brina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annarita Miluzio

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Sara Ricciardi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Clarke

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Anne Beugnet

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Elisa Pesce

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge