Daniela C. Dieterich
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela C. Dieterich.
Nature Protocols | 2007
Daniela C. Dieterich; Jennifer J Lee; A. James Link; Johannes Graumann; David A. Tirrell; Erin M. Schuman
A major aim of proteomics is the identification of proteins in a given proteome at a given metabolic state. This protocol describes the step-by-step labeling, purification and detection of newly synthesized proteins in mammalian cells using the non-canonical amino acid azidohomoalanine (AHA). In this method, metabolic labeling of newly synthesized proteins with AHA endows them with the unique chemical functionality of the azide group. In the subsequent click chemistry tagging reaction, azide-labeled proteins are covalently coupled to an alkyne-bearing affinity tag. After avidin-based affinity purification and on-resin trypsinization, the resulting peptide mixture is subjected to tandem mass spectrometry for identification. In combination with deuterated leucine-based metabolic colabeling, candidate proteins can be immediately validated. Bioorthogonal non-canonical amino-acid tagging can be combined with any subcellular fractionation, immunopurification or other proteomic method to identify specific subproteomes, thereby reducing sample complexity and enabling the identification of subtle changes in a proteome. This protocol can be completed in 5 days.
PLOS Biology | 2008
Daniela C. Dieterich; Anna Karpova; Marina Mikhaylova; Irina Zdobnova; Imbritt König; Marco Landwehr; Martin Kreutz; Karl-Heinz Smalla; Karin Richter; Peter Landgraf; Carsten Reissner; Tobias M. Boeckers; Werner Zuschratter; Christina Spilker; Constanze I. Seidenbecher; Craig C. Garner; Eckart D. Gundelfinger; Michael R. Kreutz
NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacobs nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacobs nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacobs extranuclear localization by competing with the binding of Importin-α to Jacobs nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.
Nature Chemical Biology | 2009
John T. Ngo; Julie A. Champion; Alborz Mahdavi; I. Caglar Tanrikulu; Kimberly E. Beatty; Rebecca E. Connor; Tae Hyeon Yoo; Daniela C. Dieterich; Erin M. Schuman; David A. Tirrell
Metabolic labeling of proteins with the methionine surrogate azidonorleucine can be targeted exclusively to specified cells through expression of a mutant methionyl-tRNA synthetase (MetRS). In complex cellular mixtures, proteins made in cells that express the mutant synthetase can be tagged with affinity reagents (for detection or enrichment) or fluorescent dyes (for imaging). Proteins made in cells that do not express the mutant synthetase are neither labeled nor detected.
Journal of the American Chemical Society | 2010
Janek Szychowski; Alborz Mahdavi; Jennifer J. L. Hodas; John D. Bagert; John T. Ngo; Peter Landgraf; Daniela C. Dieterich; Erin M. Schuman; David A. Tirrell
The azide-alkyne cycloaddition provides a powerful tool for bio-orthogonal labeling of proteins, nucleic acids, glycans, and lipids. In some labeling experiments, e.g., in proteomic studies involving affinity purification and mass spectrometry, it is convenient to use cleavable probes that allow release of labeled biomolecules under mild conditions. Five cleavable biotin probes are described for use in labeling of proteins and other biomolecules via azide-alkyne cycloaddition. Subsequent to conjugation with metabolically labeled protein, these probes are subject to cleavage with either 50 mM Na(2)S(2)O(4), 2% HOCH(2)CH(2)SH, 10% HCO(2)H, 95% CF(3)CO(2)H, or irradiation at 365 nm. Most strikingly, a probe constructed around a dialkoxydiphenylsilane (DADPS) linker was found to be cleaved efficiently when treated with 10% HCO(2)H for 0.5 h. A model green fluorescent protein was used to demonstrate that the DADPS probe undergoes highly selective conjugation and leaves a small (143 Da) mass tag on the labeled protein after cleavage. These features make the DADPS probe especially attractive for use in biomolecular labeling and proteomic studies.
Nature Methods | 2013
Andrew J. M. Howden; Vincent Geoghegan; Kristin Katsch; Georgios Efstathiou; Bhaskar Bhushan; Omar Boutureira; Benjamin Thomas; David C. Trudgian; Benedikt M. Kessler; Daniela C. Dieterich; Benjamin G. Davis; Oreste Acuto
Here we demonstrate quantitation of stimuli-induced proteome dynamics in primary cells by combining the power of bio-orthogonal noncanonical amino acid tagging (BONCAT) and stable-isotope labeling of amino acids in cell culture (SILAC). In conjunction with nanoscale liquid chromatography–tandem mass spectrometry (nanoLC-MS/MS), quantitative noncanonical amino acid tagging (QuaNCAT) allowed us to monitor the early expression changes of >600 proteins in primary resting T cells subjected to activation stimuli.
PLOS ONE | 2013
Laurie D. Cohen; Rina Zuchman; Oksana Sorokina; Anke Müller; Daniela C. Dieterich; J. Douglas Armstrong; Tamar Ziv; Noam E. Ziv
Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial.
Molecular and Cellular Neuroscience | 2002
G. Laube; Constanze I. Seidenbecher; Karin Richter; Daniela C. Dieterich; B. Hoffmann; Marco Landwehr; Karl-Heinz Smalla; C. Winter; Tobias M. Böckers; Gerald Wolf; Eckart D. Gundelfinger; Michael R. Kreutz
Caldendrin is the founder member of a recently discovered family of calmodulin-like proteins, which are highly abundant in brain. In this study we examined the organization of the murine and human caldendrin gene as well as the expression pattern of transcripts for caldendrin and two novel splice variants. In addition the distribution of caldendrin in rat brain has been assessed by immunohistochemistry. Caldendrin is localized to the somatodendritic compartment of a subpopulation of mainly principal neurons in brain regions with a laminar organization and is present only at a subset of mature excitatory synapses. Caldendrin immunoreactivity (IR) is tightly associated with the cortical cytoskeleton, enriched in the postsynaptic density (PSD) fraction, and associates late during development with the synaptic cytomatrix. The expression is highly heterogenous within cortex, with highest levels of caldendrin IR in layer III of the piriform and layer II/III of the somatosensory cortex. The segregated cortical distribution to areas, which represent the most important primary sensory systems of the rodent brain, may reflect different requirements for dendritic Ca2+-signaling in these neurons. The presence of caldendrin in the PSD of distinct synapses may have important implications for Ca2+-modulated processes of synaptic plasticity.
Frontiers in Molecular Neuroscience | 2014
Tali Rosenberg; Shunit Gal-Ben-Ari; Daniela C. Dieterich; Michael R. Kreutz; Noam E. Ziv; Eckart D. Gundelfinger; Kobi Rosenblum
The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.
Proteomics | 2012
Jennifer J. L. Hodas; Anne Nehring; Nicole Höche; Michael J. Sweredoski; Rainer Pielot; Sonja Hess; David A. Tirrell; Daniela C. Dieterich; Erin M. Schuman
Local protein synthesis and its activity‐dependent modulation via dopamine receptor stimulation play an important role in synaptic plasticity – allowing synapses to respond dynamically to changes in their activity patterns. We describe here the metabolic labeling, enrichment, and MS‐based identification of candidate proteins specifically translated in intact hippocampal neuropil sections upon treatment with the selective D1/D5 receptor agonist SKF81297. Using the noncanonical amino acid azidohomoalanine and click chemistry, we identified over 300 newly synthesized proteins specific to dendrites and axons. Candidates specific for the SKF81297‐treated samples were predominantly involved in protein synthesis and synapse‐specific functions. Furthermore, we demonstrate a dendrite‐specific increase in proteins synthesis upon application of SKF81297. This study provides the first snapshot in the dynamics of the dopaminergic hippocampal neuropil proteome.
Frontiers in Synaptic Neuroscience | 2012
Rainer Pielot; Karl-Heinz Smalla; Anke Müller; Peter Landgraf; Anne-Christin Lehmann; Elke Eisenschmidt; Utz-Uwe Haus; Robert Weismantel; Eckart D. Gundelfinger; Daniela C. Dieterich
Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.