Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Landgraf is active.

Publication


Featured researches published by Peter Landgraf.


PLOS Biology | 2008

Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus.

Daniela C. Dieterich; Anna Karpova; Marina Mikhaylova; Irina Zdobnova; Imbritt König; Marco Landwehr; Martin Kreutz; Karl-Heinz Smalla; Karin Richter; Peter Landgraf; Carsten Reissner; Tobias M. Boeckers; Werner Zuschratter; Christina Spilker; Constanze I. Seidenbecher; Craig C. Garner; Eckart D. Gundelfinger; Michael R. Kreutz

NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacobs nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacobs nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacobs extranuclear localization by competing with the binding of Importin-α to Jacobs nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.


Journal of the American Chemical Society | 2010

Cleavable Biotin Probes for Labeling of Biomolecules via Azide−Alkyne Cycloaddition

Janek Szychowski; Alborz Mahdavi; Jennifer J. L. Hodas; John D. Bagert; John T. Ngo; Peter Landgraf; Daniela C. Dieterich; Erin M. Schuman; David A. Tirrell

The azide-alkyne cycloaddition provides a powerful tool for bio-orthogonal labeling of proteins, nucleic acids, glycans, and lipids. In some labeling experiments, e.g., in proteomic studies involving affinity purification and mass spectrometry, it is convenient to use cleavable probes that allow release of labeled biomolecules under mild conditions. Five cleavable biotin probes are described for use in labeling of proteins and other biomolecules via azide-alkyne cycloaddition. Subsequent to conjugation with metabolically labeled protein, these probes are subject to cleavage with either 50 mM Na(2)S(2)O(4), 2% HOCH(2)CH(2)SH, 10% HCO(2)H, 95% CF(3)CO(2)H, or irradiation at 365 nm. Most strikingly, a probe constructed around a dialkoxydiphenylsilane (DADPS) linker was found to be cleaved efficiently when treated with 10% HCO(2)H for 0.5 h. A model green fluorescent protein was used to demonstrate that the DADPS probe undergoes highly selective conjugation and leaves a small (143 Da) mass tag on the labeled protein after cleavage. These features make the DADPS probe especially attractive for use in biomolecular labeling and proteomic studies.


The Journal of Neuroscience | 2009

Cytotoxic CD8+ T Cell–Neuron Interactions: Perforin-Dependent Electrical Silencing Precedes But Is Not Causally Linked to Neuronal Cell Death

Sven G. Meuth; Alexander M. Herrmann; Ole J. Simon; Volker Siffrin; Nico Melzer; Stefan Bittner; Patrick Meuth; Harald Langer; Stefan Hallermann; Nadia Boldakowa; Josephine Herz; Thomas Munsch; Peter Landgraf; Orhan Aktas; Manfred Heckmann; Volkmar Lessmann; Thomas Budde; Bernd C. Kieseier; Frauke Zipp; Heinz Wiendl

Cytotoxic CD8+ T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation and T cell receptor specificity determine CD8+ T-cell locomotion and neuronal damage in culture and hippocampal brain slices. Two separate functional consequences result from a direct cell–cell contact between antigen-presenting neurons and antigen-specific CD8+ T cells. (1) An immediate impairment of electrical signaling in single neurons and neuronal networks occurs as a result of massive shunting of the membrane capacitance after insertion of channel-forming perforin (and probably activation of other transmembrane conductances), which is paralleled by an increase of intracellular Ca2+ levels (within <10 min). (2) Antigen-dependent neuronal apoptosis may occur independently of perforin and members of the granzyme B cluster (within ∼1 h), suggesting that extracellular effects can substitute for intracellular delivery of granzymes by perforin. Thus, electrical silencing is an immediate consequence of MHC I-restricted interaction of CD8+ T cells with neurons. This mechanism is clearly perforin-dependent and precedes, but is not causally linked, to neuronal cell death.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking

Marina Mikhaylova; Pasham Parameshwar Reddy; Thomas Munsch; Peter Landgraf; Shashi Kumar Suman; Karl-Heinz Smalla; Eckart D. Gundelfinger; Yogendra Sharma; Michael R. Kreutz

Phosphatidylinositol 4-OH kinase IIIβ (PI-4Kβ) is involved in the regulated local synthesis of phospholipids that are crucial for trans-Golgi network (TGN)-to-plasma membrane trafficking. In this study, we show that the calcium sensor proteins calneuron-1 and calneuron-2 physically associate with PI-4Kβ, inhibit the enzyme profoundly at resting and low calcium levels, and negatively interfere with Golgi-to-plasma membrane trafficking. At high calcium levels this inhibition is released and PI-4Kβ is activated via a preferential association with neuronal calcium sensor-1 (NCS-1). In accord to its supposed function as a filter for subthreshold Golgi calcium transients, neuronal overexpression of calneuron-1 enlarges the size of the TGN caused by a build-up of vesicle proteins and reduces the number of axonal Piccolo-Bassoon transport vesicles, large dense core vesicles that carry a set of essential proteins for the formation of the presynaptic active zone during development. A corresponding protein knockdown has the opposite effect. The opposing roles of calneurons and NCS-1 provide a molecular switch to decode local calcium transients at the Golgi and impose a calcium threshold for PI-4Kβ activity and vesicle trafficking.


Molecular and Cellular Neuroscience | 2007

Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons

Tilman Broicher; Tatyana Kanyshkova; Peter Landgraf; Vladan Rankovic; Patrick Meuth; Sven G. Meuth; Hans-Christian Pape; Thomas Budde

It has been suggested that the specific burst firing patterns of thalamic neurons reflect differential expression of low-voltage-activated (LVA) Ca(2+) channel subtypes and their splice variants. By combining electrophysiological, molecular biological, immunological, and computational modeling techniques we here show that diverging LVA Ca(2+) currents of thalamocortical relay (TC) and GABAergic interneurons of the dLGN correlate with a differential expression of LVA Ca(2+) channel splice variations and isoforms (alpha1G-a in TC; alpha1G-bc and alpha1I in interneurons). Implementation of the observed LVA Ca(2+) current differences into a TC neuron model changed the burst firing from TC-like to interneuron-like. We conclude that alternative splicing of the alpha1G isoform in dLGN TC and interneurons, and the exclusive expression of the alpha1I isoform in interneurons play a prominent role in setting the different LVA Ca(2+) current properties of TC and interneurons, which critically contribute to the diverging burst firing behavior of these neurons.


Frontiers in Synaptic Neuroscience | 2012

SynProt: a database for proteins of detergent-resistant synaptic protein preparations

Rainer Pielot; Karl-Heinz Smalla; Anke Müller; Peter Landgraf; Anne-Christin Lehmann; Elke Eisenschmidt; Utz-Uwe Haus; Robert Weismantel; Eckart D. Gundelfinger; Daniela C. Dieterich

Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.


Journal of Biological Chemistry | 2008

The Survival-promoting Peptide Y-P30 Enhances Binding of Pleiotrophin to Syndecan-2 and -3 and Supports Its Neuritogenic Activity

Peter Landgraf; Petra Wahle; Hans-Christian Pape; Eckart D. Gundelfinger; Michael R. Kreutz

Y-P30 is a polypeptide produced by peripheral blood mononuclear cells of the maternal immune system during pregnancy. The peptide passes the blood-placenta barrier and accumulates in neurons of the developing infant brain, where it enhances survival of thalamic neurons and displays neuritogenic activities. In this study, we identify pleiotrophin (PTN) and syndecan-2 and -3 as direct binding partners of Y-P30. PTN is known to promote neurite outgrowth of thalamic neurons due to its association with the proteoglycan syndecan-3. Via spontaneous oligomerization Y-P30 can capture large macromolecular complexes containing PTN and potentially syndecans. Accordingly, the neuritogenic activity of Y-P30 in thalamic primary cultures requires the presence of PTN in the media and binding to syndecans. Thus, we propose that the neurite outgrowth promoting actions of Y-P30 during brain development are essentially based on its association with the PTN/syndecan signaling complex. This identifies a new mechanism of communication between the nervous and the immune system that might directly affect the wiring of the brain during development.


The FASEB Journal | 2004

A maternal blood-borne factor promotes survival of the developing thalamus

Peter Landgraf; Frank Sieg; Petra Wahle; Gundela Meyer; Michael R. Kreutz; Hans-Christian Pape

In this report, we describe the identification of a polypeptide survival‐promoting factor that is produced by maternal and early postnatal peripheral blood mononuclear cells (PBMCs) of the immune system in Long‐Evans rats and humans. The factor, termed Y‐P30, most likely arises from proteolytic processing of a larger precursor protein and accumulates mainly in pyramidal neurons of the developing cortex and hippocampus but not in astrocytes. It was released from neurons grown in culture and substantially promotes survival of cells in explant monocultures of perinatal thalamus from the offspring. Y‐P30 mRNA was not detectable in infant or adult brain and was present only in blood cells of pregnant rats and humans but not in nonpregnant controls. However, Y‐P30 transcription could be induced in PBMCs of adult animals by a central nervous system lesion (i.e., optic nerve crush), which points to a potential role of the factor not only in neuronal development but also in neuroinflammation after white matter injury.


Pflügers Archiv: European Journal of Physiology | 2012

Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons.

Pawan Bista; Sven G. Meuth; Tatyana Kanyshkova; Manuela Cerina; Matthias Pawlowski; Petra Ehling; Peter Landgraf; Marc Borsotto; Catherine Heurteaux; Hans-Christian Pape; Thomas Baukrowitz; Thomas Budde

Modulation of the standing outward current (ISO) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K+ (K2P) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K+ (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K+ (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M1AChR-(pirenzepine, MT-7) and M3AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCβ (PI-PLC) inhibitors (U73122, ET-18-OCH3), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5′-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on ISO. Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M1AChR/M3AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.


PLOS ONE | 2011

Modulation of calcium-dependent inactivation of L-type Ca2+ channels via β-adrenergic signaling in thalamocortical relay neurons.

Vladan Rankovic; Peter Landgraf; Tatyana Kanyshkova; Petra Ehling; Sven G. Meuth; Michael R. Kreutz; Thomas Budde; Thomas Munsch

Neuronal high-voltage-activated (HVA) Ca2+ channels are rapidly inactivated by a mechanism that is termed Ca2+-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14–22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after βAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via βAR stimulation requires a protein complex consisting of CaV1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca2+ channels allowing their phosphorylation and thereby modulation of CDI.

Collaboration


Dive into the Peter Landgraf's collaboration.

Top Co-Authors

Avatar

Michael R. Kreutz

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela C. Dieterich

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Wahle

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eckart D. Gundelfinger

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Karl-Heinz Smalla

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge