Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Carnevale is active.

Publication


Featured researches published by Daniela Carnevale.


Journal of Neuroinflammation | 2005

Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures

Roberta De Simone; Maria Antonietta Ajmone-Cat; Daniela Carnevale; Luisa Minghetti

BackgroundNicotinic acetylcholine (Ach) receptors are ligand-gated pentameric ion channels whose main function is to transmit signals for the neurotransmitter Ach in peripheral and central nervous system. However, the α7 nicotinic receptor has been recently found in several non-neuronal cells and described as an important regulator of cellular function. Nicotine and ACh have been recently reported to inhibit tumor necrosis factor-α (TNF-α) production in human macrophages as well as in mouse microglial cultures. In the present study, we investigated whether the stimulation of α7 nicotinic receptor by the specific agonist nicotine could affect the functional state of activated microglia by promoting and/or inhibiting the release of other important pro-inflammatory and lipid mediator such as prostaglandin E2.MethodsExpression of α7 nicotinic receptor in rat microglial cell was examined by RT-PCR, immunofluorescence staining and Western blot. The functional effects of α7 receptor activation were analyzed in resting or lipopolysaccharide (LPS) stimulated microglial cells pre-treated with nicotine. Culture media were assayed for the levels of tumor necrosis factor, interleukin-1β, nitric oxide, interleukin-10 and prostaglandin E2. Total RNA was assayed by RT-PCR for the expression of COX-2 mRNA.ResultsRat microglial cells express α7 nicotinic receptor, and its activation by nicotine dose-dependently reduces the LPS-induced release of TNF-α, but has little or no effect on nitric oxide, interleukin-10 and interleukin-1β. By contrast, nicotine enhances the expression of cyclooxygenase-2 and the synthesis of one of its major products, prostaglandin E2.ConclusionsSince prostaglandin E2 modulates several macrophage and lymphocyte functions, which are instrumental for inflammatory resolution, our study further supports the existence of a brain cholinergic anti-inflammatory pathway mediated by α7 nicotinic receptor that could be potentially exploited for novel treatments of several neuropathologies in which local inflammation, sustained by activated microglia, plays a crucial role.


Hypertension | 2012

Hypertension Induces Brain β-Amyloid Accumulation, Cognitive Impairment, and Memory Deterioration Through Activation of Receptor for Advanced Glycation End Products in Brain Vasculature

Daniela Carnevale; Giada Mascio; Ivana D'Andrea; Valentina Fardella; Robert D. Bell; Igor Branchi; Fabio Pallante; Berislav V. Zlokovic; Shirley ShiDu Yan; Giuseppe Lembo

Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates A&bgr; transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal A&bgr; deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal A&bgr; deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.


Cns & Neurological Disorders-drug Targets | 2007

Microglia-neuron interaction in inflammatory and degenerative diseases: Role of cholinergic and noradrenergic systems

Luisa Minghetti; Daniela Carnevale; R. De Simone

Reciprocal interactions between glia and neurons are essential for many critical functions in brain health and disease. Microglial cells, the brain resident macrophages, and astrocytes, the most prevalent type of cell in brain, are actively involved in the control of neuronal activities both in developing and adult organisms. At the same time, neurons influence glial functions, through direct cell-to-cell interactions as well as the release of soluble mediators. Among signals from neurons that may have an active role in controlling glial activation are two major neurotransmitters: acetylcholine and noradrenaline. Several studies indicate that microglia and astrocytes express adrenergic receptors, whose activation influences the release of pro-inflammatory mediators, controlling the extent of glial reactivity. Acetylcholine receptors are also expressed by glial cells. In particular, microglial cells express the nicotinic receptor alpha7 and its activation attenuates the pro-inflammatory response of microglial cultures, suggesting that acetylcholine may control brain inflammation, in analogy to what demonstrated in peripheral tissues. Deficiencies of noradrenergic and cholinergic systems are linked to important neurodegenerative diseases such as Parkinsons disease (PD) and Alzheimers disease (AD) and it has been suggested that in addition to impairing neuron-to-neuron transmission, noradrenergic and cholinergic hypofunction may contribute to dysregulation of the normal neuron-glia interaction, abnormal glial reaction and, eventually, neurodegeneration. A deeper knowledge of role of cholinergic and noradrenergic systems in controlling neuron-glia interactions may offer new venues for disease treatments.


Hypertension | 2009

Pressure-Induced Vascular Oxidative Stress Is Mediated Through Activation of Integrin-Linked Kinase 1/βPIX/Rac-1 Pathway

Carmine Vecchione; Daniela Carnevale; Alba Di Pardo; Maria Teresa Gentile; Antonio Damato; Germana Cocozza; Giovanna Antenucci; Giada Mascio; Umberto Bettarini; Alessandro Landolfi; Luca Iorio; Angelo Maffei; Giuseppe Lembo

High blood pressure induces a mechanical stress on vascular walls and evokes oxidative stress and vascular dysfunction. The aim of this study was to characterize the intracellular signaling causing vascular oxidative stress in response to pressure. In carotid arteries subjected to high pressure levels, we observed not only an impaired vasorelaxation, increased superoxide production, and NADPH oxidase activity, but also a concomitant activation of Rac-1, a small G protein. Selective inhibition of Rac-1, with an adenovirus carrying a dominant-negative Rac-1 mutant, significantly reduced NADPH oxidase activity and oxidative stress and, more importantly, rescued vascular function in carotid arteries at high pressure. The analysis of molecular events associated with mechanotransduction demonstrated at high pressure levels an overexpression of integrin-linked kinase 1 and its recruitment to plasma membrane interacting with paxillin. The inhibition of integrin-linked kinase 1 by small interfering RNA impaired Rac-1 activation and rescued oxidative stress–induced vascular dysfunction in response to high pressure. Finally, we showed that &bgr;PIX, a guanine-nucleotide exchange factor, is the intermediate molecule recruited by integrin-linked kinase 1, converging the intracellular signaling toward Rac-1–mediated oxidative vascular dysfunction during pressure overload. Our data demonstrate that biomechanical stress evoked by high blood pressure triggers an integrin-linked kinase 1/&bgr;PIX/Rac-1 signaling, thus generating oxidative vascular dysfunction.


Neurobiology of Aging | 2012

Role of neuroinflammation in hypertension-induced brain amyloid pathology

Daniela Carnevale; Giada Mascio; Maria Antonietta Ajmone-Cat; Ivana D'Andrea; Giuseppe Cifelli; Michele Madonna; Germana Cocozza; Alessandro Frati; Pierluigi Carullo; Lorenzo Carnevale; Enrico Alleva; Igor Branchi; Giuseppe Lembo; Luisa Minghetti

Hypertension and sporadic Alzheimers disease (AD) have been associated but clear pathophysiological links have not yet been demonstrated. Hypertension and AD share inflammation as a pathophysiological trait. Thus, we explored if modulating neuroinflammation could influence hypertension-induced β-amyloid (Aβ) deposition. Possible interactions among hypertension, inflammation and Aβ-deposition were studied in hypertensive mice with transverse aortic coarctation (TAC). Given that brain Aβ deposits are detectable as early as 4 weeks after TAC, brain pathology was analyzed in 3-week TAC mice, before Aβ deposition, and at a later time (8-week TAC mice). Microglial activation and interleukin (IL)-1β upregulation were already found in 3-week TAC mice. At a later time, along with evident Aβ deposition, microglia was still activated. Finally, immune system stimulation (LPS) or inhibition (ibuprofen), strategies described to positively or negatively modulate neuroinflammation, differently affected Aβ deposition. We demonstrate that hypertension per se triggers neuroinflammation before Aβ deposition. The finding that only immune system activation, but not its inhibition, strongly reduced amyloid burden suggests that stimulating inflammation in the appropriate time window may represent a promising strategy to limit vascular-triggered AD-pathology.


Cardiovascular Research | 2011

IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload

Mauro Sbroggiò; Daniela Carnevale; Alessandro Bertero; Giuseppe Cifelli; Emanuele De Blasio; Giada Mascio; Emilio Hirsch; Wadie F. Bahou; Emilia Turco; Lorenzo Silengo; Mara Brancaccio; Giuseppe Lembo; Guido Tarone

AIMSnThe Raf-MEK1/2-ERK1/2 (ERK1/2-extracellular signal-regulated kinases 1/2) signalling cascade is crucial in triggering cardiac responses to different stress stimuli. Scaffold proteins are key elements in coordinating signalling molecules for their appropriate spatiotemporal activation. Here, we investigated the role of IQ motif-containing GTPase-activating protein 1 (IQGAP1), a scaffold for the ERK1/2 cascade, in heart function and remodelling in response to pressure overload.nnnMETHODS AND RESULTSnIQGAP1-null mice have unaltered basal heart function. When subjected to pressure overload, IQGAP1-null mice initially develop a compensatory hypertrophy indistinguishable from that of wild-type (WT) mice. However, upon a prolonged stimulus, the hypertrophic response develops towards a thinning of left ventricular walls, chamber dilation, and a decrease in contractility, in an accelerated fashion compared with WT mice. This unfavourable cardiac remodelling is characterized by blunted reactivation of the foetal gene programme, impaired cardiomyocyte hypertrophy, and increased cardiomyocyte apoptosis. Analysis of signalling pathways revealed two temporally distinct waves of both ERK1/2 and AKT phosphorylation peaking, respectively, at 10 min and 4 days after aortic banding in WT hearts. IQGAP1-null mice show strongly impaired phosphorylation of MEK1/2-ERK1/2 and AKT following 4 days of pressure overload, but normal activation of these kinases after 10 min. Pull-down experiments indicated that IQGAP1 is able to bind the three components of the ERK cascade, namely c-Raf, MEK1/2, and ERK1/2, as well as AKT in the heart.nnnCONCLUSIONnThese data demonstrate, for the first time, a key role for the scaffold protein IQGAP1 in integrating hypertrophy and survival signals in the heart and regulating long-term left ventricle remodelling upon pressure overload.


Circulation | 2011

Placental Growth Factor Regulates Cardiac Inflammation Through the Tissue Inhibitor of Metalloproteinases-3/Tumor Necrosis Factor-α–Converting Enzyme Axis Crucial Role for Adaptive Cardiac Remodeling During Cardiac Pressure Overload

Daniela Carnevale; Giuseppe Cifelli; Giada Mascio; Michele Madonna; Mauro Sbroggiò; Cinzia Perrino; Maria Grazia Persico; Giacomo Frati; Giuseppe Lembo

Background—Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. Methods and Results—After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-α–converting enzyme. Interestingly, after tra...Background— Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. Methods and Results— After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-&agr;–converting enzyme. Interestingly, after transverse aortic constriction, placental growth factor knockout mice had strongly increased levels of tissue inhibitor of metalloproteinases-3, the main natural TACE inhibitor, thus indicating an unbalance of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-&agr;–converting enzyme axis. Strikingly, when we used an in vivo RNA interference approach to reduce tissue inhibitor of metalloproteinases-3 levels in placental growth factor knockout mice during transverse aortic constriction, we obtained a complete phenotype rescue of early dilated cardiomyopathy. Conclusions— Our results demonstrate that placental growth factor finely tunes a balanced regulation of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-&agr;–converting enzyme axis and the consequent TNF-&agr; activation in response to transverse aortic constriction, thus allowing the establishment of an inflammatory response necessary for adaptive cardiac remodeling.


Circulation | 2011

Distinct Effects of Leukocyte and Cardiac Phosphoinositide 3-Kinase γ Activity in Pressure Overload–Induced Cardiac Failure

Federico Damilano; Irene Franco; Cinzia Perrino; Katrin Schaefer; Ornella Azzolino; Daniela Carnevale; Giuseppe Cifelli; Pierluigi Carullo; Riccardo Ragona; Alessandra Ghigo; Alessia Perino; Giuseppe Lembo; Emilio Hirsch

Background— Signaling from phosphoinositide 3-kinase &ggr; (PI3K&ggr;) is crucial for leukocyte recruitment and inflammation but also contributes to cardiac maladaptive remodeling. To better understand the translational potential of these findings, this study investigates the role of PI3K&ggr; activity in pressure overload–induced heart failure, addressing the distinct contributions of bone marrow–derived and cardiac cells. Methods and Results— After transverse aortic constriction, mice knock-in for a catalytically inactive PI3K&ggr; (PI3K&ggr; KD) showed reduced fibrosis and normalized cardiac function up to 16 weeks. Accordingly, treatment with a selective PI3K&ggr; inhibitor prevented transverse aortic constriction–induced fibrosis. To define the cell types involved in this protection, bone marrow chimeras, lacking kinase activity in the immune system or the heart, were studied after transverse aortic constriction. Bone marrow–derived cells from PI3K&ggr; KD mice were not recruited to wild-type hearts, thus preventing fibrosis and preserving diastolic function. After prolonged pressure overload, chimeras with PI3K&ggr; KD bone marrow–derived cells showed slower development of left ventricular dilation and higher fractional shortening than controls. Conversely, in the presence of a wild-type immune system, KD hearts displayed bone marrow–derived cell infiltration and fibrosis at early stages but reduced left ventricular dilation and preserved contractile function at later time points. Conclusions— Together, these data demonstrate that, in response to transverse aortic constriction, PI3K&ggr; contributes to maladaptive remodeling at multiple levels by modulating both cardiac and immune cell functions.


Journal of Neuroimmunology | 2007

NGF promotes microglial migration through the activation of its high affinity receptor: Modulation by TGF-β

R. De Simone; Elena Ambrosini; Daniela Carnevale; Maria Antonietta Ajmone-Cat; Luisa Minghetti

Activation and mobilization of microglia are early events in the majority of brain pathologies. Among the signalling molecules that can affect microglial behaviour, we investigated whether nerve growth factor (NGF) was able to influence microglial motility. We found that NGF induced chemotaxis of microglial cells through the activation of TrkA receptor. In addition, NGF chemotactic activity was increased in the presence of low concentrations (< or =0.2 ng/ml) of transforming growth factor-beta (TGF-beta), which at this concentration showed chemotactic activity per se. On the contrary, NGF-induced microglial migration was reduced in the presence of chemokinetic concentration of TGF-beta (> or =2 ng/ml). Finally, both basal and NGF-induced migratory activity of microglial cells was increased after a long-term exposure of primary mixed glial cultures to 2 ng/ml of TGF-beta. Our observations suggest that both NGF and TGF-beta contribute to microglial recruitment. The chemotactic activities of these two pleiotropic factors could be particularly relevant during chronic diseases in which recruited microglia remove apoptotic neurons in the absence of a typical inflammatory reaction.


Circulation | 2011

Placental Growth Factor Regulates Cardiac Inflammation Through the Tissue Inhibitor of Metalloproteinases-3/Tumor Necrosis Factor-α–Converting Enzyme Axis

Daniela Carnevale; Giuseppe Cifelli; Giada Mascio; Michele Madonna; Mauro Sbroggiò; Cinzia Perrino; Maria Grazia Persico; Giacomo Frati; Giuseppe Lembo

Background—Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. Methods and Results—After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-α–converting enzyme. Interestingly, after tra...Background— Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. Methods and Results— After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-&agr;–converting enzyme. Interestingly, after transverse aortic constriction, placental growth factor knockout mice had strongly increased levels of tissue inhibitor of metalloproteinases-3, the main natural TACE inhibitor, thus indicating an unbalance of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-&agr;–converting enzyme axis. Strikingly, when we used an in vivo RNA interference approach to reduce tissue inhibitor of metalloproteinases-3 levels in placental growth factor knockout mice during transverse aortic constriction, we obtained a complete phenotype rescue of early dilated cardiomyopathy. Conclusions— Our results demonstrate that placental growth factor finely tunes a balanced regulation of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-&agr;–converting enzyme axis and the consequent TNF-&agr; activation in response to transverse aortic constriction, thus allowing the establishment of an inflammatory response necessary for adaptive cardiac remodeling.

Collaboration


Dive into the Daniela Carnevale's collaboration.

Top Co-Authors

Avatar

Giuseppe Lembo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Igor Branchi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ivana D'Andrea

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Luisa Minghetti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giacomo Frati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Berislav V. Zlokovic

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge