Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Braghetta is active.

Publication


Featured researches published by Paola Braghetta.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors.

Silvia Maretto; Michelangelo Cordenonsi; Sirio Dupont; Paola Braghetta; Vania Broccoli; A. Bassim Hassan; Dino Volpin; Giorgio M. Bressan; Stefano Piccolo

Wnt/β-catenin signaling plays key roles in several developmental and pathological processes. Domains of Wnt expression have been extensively investigated in the mouse, but the tissues receiving the signal remain largely unidentified. To define which cells respond to activated β-catenin during mammalian development, we generated the β-catenin-activated transgene driving expression of nuclear β-galactosidase reporter (BAT-gal) transgenic mice, expressing the lacZ gene under the control of β-catenin/T cell factor responsive elements. Reporter gene activity is found in known organizing centers, such as the midhindbrain border and the limb apical ectodermal ridge. Moreover, BAT-gal expression identifies novel sites of Wnt signaling, like notochord, endothelia, and areas of the adult brain, revealing an unsuspected dynamic pattern of β-catenin transcriptional activity. Expression of the transgene was analyzed in mutant backgrounds. In lipoprotein receptor-related protein 6-null homozygous mice, which lack a Wnt coreceptor, BAT-gal staining is absent in mutant tissues, indicating that BAT-gal mice are bona fide in vivo indicators of Wnt/β-catenin signaling. Analyses of BAT-gal expression in the adenomatous polyposis coli (multiple intestinal neoplasia/+) background revealed βcatenin transcriptional activity in intestinal adenomas but surprisingly not in normal crypt cells. In summary, BAT-gal mice unveil the entire complexity of Wnt/β-catenin signaling in mammals and have broad application potentials for the identification of Wnt-responsive cell populations in development and disease.


Nature Genetics | 2003

Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency

William Irwin; Natascha Bergamin; Patrizia Sabatelli; Carlo Reggiani; Aram Megighian; Luciano Merlini; Paola Braghetta; Marta Columbaro; Dino Volpin; Giorgio M. Bressan; Paolo Bernardi; Paolo Bonaldo

Collagen VI is an extracellular matrix protein that forms a microfilamentous network in skeletal muscles and other organs. Inherited mutations in genes encoding collagen VI in humans cause two muscle diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy. We previously generated collagen VI–deficient (Col6a1−/−) mice and showed that they have a muscle phenotype that strongly resembles Bethlem myopathy. The pathophysiological defects and mechanisms leading to the myopathic disorder were not known. Here we show that Col6a1−/− muscles have a loss of contractile strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria and spontaneous apoptosis. We found a latent mitochondrial dysfunction in myofibers of Col6a1−/− mice on incubation with the selective F1FO-ATPase inhibitor oligomycin, which caused mitochondrial depolarization, Ca2+ deregulation and increased apoptosis. These defects were reversible, as they could be normalized by plating Col6a1−/− myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP). Treatment of Col6a1−/− mice with CsA rescued the muscle ultrastructural defects and markedly decreased the number of apoptotic nuclei in vivo. These findings indicate that collagen VI myopathies have an unexpected mitochondrial pathogenesis that could be exploited for therapeutic intervention.


Cell | 2006

Emilin1 links TGF-β maturation to blood pressure homeostasis

Luca Zacchigna; Carmine Vecchione; Antonella Notte; Michelangelo Cordenonsi; Sirio Dupont; Silvia Maretto; Giuseppe Cifelli; Alessandra Ferrari; Angelo Maffei; Carla Fabbro; Paola Braghetta; Gennaro Marino; Giulio Selvetella; Alessandra Aretini; Claudio Colonnese; Umberto Bettarini; Giovanni Russo; Sandra Soligo; Maddalena Adorno; Paolo Bonaldo; Dino Volpin; Stefano Piccolo; Giuseppe Lembo; Giorgio M. Bressan

TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies.

Luciano Merlini; Alessia Angelin; Tania Tiepolo; Paola Braghetta; Patrizia Sabatelli; Alessandra Zamparelli; Alessandra Ferlini; Nadir M. Maraldi; Paolo Bonaldo; Paolo Bernardi

Ullrich congenital muscular dystrophy and Bethlem myopathy are skeletal muscle diseases that are due to mutations in the genes encoding collagen VI, an extracellular matrix protein forming a microfibrillar network that is particularly prominent in the endomysium of skeletal muscle. Myoblasts from patients affected by Ullrich congenital muscular dystrophy display functional and ultrastructural mitochondrial alterations and increased apoptosis due to inappropriate opening of the permeability transition pore, a mitochondrial inner membrane channel. These alterations could be normalized by treatment with cyclosporin A, a widely used immunosuppressant that desensitizes the permeability transition pore independently of calcineurin inhibition. Here, we report the results of an open pilot trial with cyclosporin A in five patients with collagen VI myopathies. Before treatment, all patients displayed mitochondrial dysfunction and increased frequency of apoptosis, as determined in muscle biopsies. Both of these pathologic signs were largely normalized after 1 month of oral cyclosporin A administration, which also increased muscle regeneration. These findings demonstrate that collagen VI myopathies can be effectively treated with drugs acting on the pathogenic mechanism downstream of the genetic lesion, and they represent an important proof of principle for the potential therapy of genetic diseases.


Molecular and Cellular Biology | 2004

EMILIN-1 deficiency induces elastogenesis and vascular cell defects

Miriam Zanetti; Paola Braghetta; Patrizia Sabatelli; Isabella Mura; Roberto Doliana; Alfonso Colombatti; Dino Volpin; Paolo Bonaldo; Giorgio M. Bressan

ABSTRACT EMILINs constitute a family of genes of the extracellular matrix with high structural similarity. Four genes have been identified so far in human and mouse. To gain insight into the function of this gene family, EMILIN-1 has been inactivated in the mouse by gene targeting. The homozygous animals were fertile and did not show obvious abnormalities. However, histological and ultrastructural examination revealed alterations of elastic fibers in aorta and skin. Formation of elastic fibers by mutant embryonic fibroblasts in culture was also abnormal. Additional alterations were observed in cell morphology and anchorage of endothelial and smooth muscle cells to elastic lamellae. Considering that EMILIN-1 is adhesive for cells and that the protein binds to elastin and fibulin-5, EMILIN-1 may regulate elastogenesis and vascular cell maintenance by stabilizing molecular interactions between elastic fiber components and by endowing elastic fibers with specific cell adhesion properties.


Molecular Therapy | 2010

Preclinical PK and PD Studies on 2 '-O-Methyl-phosphorothioate RNA Antisense Oligonucleotides in the mdx Mouse Model

Hans Heemskerk; Christa L. de Winter; Petra Van Kuik; Niki Heuvelmans; Patrizia Sabatelli; Paola Rimessi; Paola Braghetta; Gert Jan B. van Ommen; Sjef J. de Kimpe; Alessandra Ferlini; Annemieke Aartsma-Rus; Judith C.T. van Deutekom

Antisense oligonucleotides (AONs) are being developed as RNA therapeutic molecules for Duchenne muscular dystrophy. For oligonucleotides with the 2′-O-methyl-phosphorothioate (2OMePS) RNA chemistry, proof of concept has been obtained in patient-specific muscle cell cultures, the mouse and dog disease models, and recently by local administration in Duchenne patients. To further explore the pharmacokinetic (PK)/pharmacodynamic (PD) properties of this chemical class of oligonucleotides, we performed a series of preclinical studies in mice. The results demonstrate that the levels of oligonucleotides in dystrophin-deficient muscle fibers are much higher than in healthy fibers, leading to higher exon-skipping levels. Oligonucleotide levels and half-life differed for specific muscle groups, with heart muscle showing the lowest levels but longest half-life (~46 days). Intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) delivery methods were directly compared. For each method, exon-skipping and novel dystrophin expression were observed in all muscles, including arrector pili smooth muscle in skin biopsies. After i.v. administration, the oligonucleotide peak levels in plasma, liver, and kidney were higher than after s.c. or i.p. injections. However, as the bioavailability was similar, and the levels of oligonucleotide, exon-skipping, and dystrophin steadily accumulated overtime after s.c. administration, we selected this patient-convenient delivery method for future clinical study protocols.


Matrix Biology | 2001

Collagen VI deficiency affects the organization of fibronectin in the extracellular matrix of cultured fibroblasts

Patrizia Sabatelli; Paolo Bonaldo; Giovanna Lattanzi; Paola Braghetta; Natascha Bergamin; Cristina Capanni; Elisabetta Mattioli; Marta Columbaro; Andrea Ognibene; Guglielmina Pepe; Enrico Bertini; Luciano Merlini; Nadir M. Maraldi; Stefano Squarzoni

Fibronectin is one of the main components of the extracellular matrix and associates with a variety of other matrix molecules including collagens. We demonstrate that the absence of secreted type VI collagen in cultured primary fibroblasts affects the arrangement of fibronectin in the extracellular matrix. We observed a fine network of collagen VI filaments and fibronectin fibrils in the extracellular matrix of normal murine and human fibroblasts. The two microfibrillar systems did not colocalize, but were interconnected at some discrete sites which could be revealed by immunoelectron microscopy. Direct interaction between collagen VI and fibronectin was also demonstrated by far western assay. When primary fibroblasts from Col6a1 null mutant mice were cultured, collagen VI was not detected in the extracellular matrix and a different pattern of fibronectin organization was observed, with fibrils running parallel to the long axis of the cells. Similarly, an abnormal fibronectin deposition was observed in fibroblasts from a patient affected by Bethlem myopathy, where collagen VI secretion was drastically reduced. The same pattern was also observed in normal fibroblasts after in vivo perturbation of collagen VI-fibronectin interaction with the 3C4 anti-collagen VI monoclonal antibody. Competition experiments with soluble peptides indicated that the organization of fibronectin in the extracellular matrix was impaired by added soluble collagen VI, but not by its triple helical (pepsin-resistant) fragments. These results indicate that collagen VI mediates the three-dimensional organization of fibronectin in the extracellular matrix of cultured fibroblasts.


Human Molecular Genetics | 2010

Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy

Sara Menazza; Bert Blaauw; Tania Tiepolo; Luana Toniolo; Paola Braghetta; Barbara Spolaore; Carlo Reggiani; Fabio Di Lisa; Paolo Bonaldo; Marcella Canton

Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.


Journal of Molecular Cell Biology | 2013

NG2/CSPG4–collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion

Sabrina Cattaruzza; Pier Andrea Nicolosi; Paola Braghetta; Laura Pazzaglia; Maria Serena Benassi; Piero Picci; Katia Lacrima; Daniela Zanocco; Erika Rizzo; William B. Stallcup; Alfonso Colombatti; Roberto Perris

In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.


Gene Therapy | 2010

Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes

Alessandra Ferlini; Patrizia Sabatelli; M. Fabris; E. Bassi; Sofia Falzarano; Gaetano Vattemi; Daniela Perrone; Francesca Gualandi; Nadir M. Maraldi; Luciano Merlini; Katia Sparnacci; Michele Laus; Antonella Caputo; Paolo Bonaldo; Paola Braghetta; Paola Rimessi

Potentially viable therapeutic approaches for Duchenne muscular dystrophy (DMD) are now within reach. Indeed, clinical trials are currently under way. Two crucial aspects still need to be addressed: maximizing therapeutic efficacy and identifying appropriate and sensible outcome measures. Nevertheless, the end point of these trials remains painful muscle biopsy to show and quantify protein restoration in treated boys. In this study we show that PMMA/N-isopropil-acrylamide+ (NIPAM) nanoparticles (ZM2) bind and convey antisense oligoribonucleotides (AONs) very efficiently. Systemic injection of the ZM2–AON complex restored dystrophin protein synthesis in both skeletal and cardiac muscles of mdx mice, allowing protein localization in up to 40% of muscle fibers. The mdx exon 23 skipping level was up to 20%, as measured by the RealTime assay, and dystrophin restoration was confirmed by both reverse transcription-PCR and western blotting. Furthermore, we verified that dystrophin restoration also occurs in the smooth muscle cells of the dorsal skin arrector pili, an easily accessible histological structure, in ZM2–AON-treated mdx mice, with respect to untreated animals. This finding reveals arrector pili smooth muscle to be an appealing biomarker candidate and a novel low-invasive treatment end point. Furthermore, this marker would also be suitable for subsequent monitoring of the therapeutic effects in DMD patients. In addition, we demonstrate herein the expression of other sarcolemma proteins such as α-, β-, γ- and δ-sarcoglycans in the human skin arrector pili smooth muscle, thereby showing the potential of this muscle as a biomarker for other muscular dystrophies currently or soon to be the object of clinical trials.

Collaboration


Dive into the Paola Braghetta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Lembo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Carnevale

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge