Daniela Digles
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Digles.
PLOS ONE | 2014
Joseline Ratnam; Barbara Zdrazil; Daniela Digles; Emiliano Cuadrado-Rodriguez; Jean-Marc Neefs; Hannah Tipney; Ronald Siebes; Andra Waagmeester; Glyn Bradley; Chau Han Chau; Lars Richter; José Antonio Fraiz Brea; Chris T. Evelo; Edgar Jacoby; Stefan Senger; María Isabel Loza; Gerhard F. Ecker; Christine Chichester
Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery.
Molecular Informatics | 2011
Daniela Digles; Gerhard F. Ecker
Self‐organizing maps, which are unsupervised artificial neural networks, have become a very useful tool in a wide area of disciplines, including medicinal chemistry. Here, we will focus on two applications of self‐organizing maps: the use of self‐organizing maps for in silico screening and for clustering and visualisation of large datasets. Additionally, the importance of parameter selection is discussed and some modifications to the original algorithm are summarised.
Nucleic Acids Research | 2018
Denise Slenter; Martina Kutmon; Kristina Hanspers; Anders Riutta; Jacob Windsor; Nuno Nunes; Jonathan Mélius; Elisa Cirillo; Susan L. Coort; Daniela Digles; Friederike Ehrhart; Pieter Giesbertz; Marianthi Kalafati; Marvin Martens; Ryan Miller; Kozo Nishida; Linda Rieswijk; Andra Waagmeester; Lars Eijssen; Chris T. Evelo; Alexander R. Pico; Egon Willighagen
Abstract WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities.
Drug Discovery Today | 2015
Christine Chichester; Daniela Digles; Ronald Siebes; Antonis Loizou; Paul T. Groth; Lee Harland
Modern data-driven drug discovery requires integrated resources to support decision-making and enable new discoveries. The Open PHACTS Discovery Platform (http://dev.openphacts.org) was built to address this requirement by focusing on drug discovery questions that are of high priority to the pharmaceutical industry. Although complex, most of these frequently asked questions (FAQs) revolve around the combination of data concerning compounds, targets, pathways and diseases. Computational drug discovery using workflow tools and the integrated resources of Open PHACTS can deliver answers to most of these questions. Here, we report on a selection of workflows used for solving these use cases and discuss some of the research challenges. The workflows are accessible online from myExperiment (http://www.myexperiment.org) and are available for reuse by the scientific community.
international semantic web conference | 2014
Colin R. Batchelor; Christian Y. A. Brenninkmeijer; Christine Chichester; Mark Davies; Daniela Digles; Ian Dunlop; Chris T. Evelo; Anna Gaulton; Carole A. Goble; Alasdair J. G. Gray; Paul T. Groth; Lee Harland; Karen Karapetyan; Antonis Loizou; John P. Overington; Steve Pettifer; Jon Steele; Robert Stevens; Valery Tkachenko; Andra Waagmeester; Antony J. Williams; Egon Willighagen
When are two entries about a small molecule in different datasets the same? If they have the same drug name, chemical structure, or some other criteria? The choice depends upon the application to which the data will be put. However, existing Linked Data approaches provide a single global view over the data with no way of varying the notion of equivalence to be applied. In this paper, we present an approach to enable applications to choose the equivalence criteria to apply between datasets. Thus, supporting multiple dynamic views over the Linked Data. For chemical data, we show that multiple sets of links can be automatically generated according to different equivalence criteria and published with semantic descriptions capturing their context and interpretation. This approach has been applied within a large scale public-private data integration platform for drug discovery. To cater for different use cases, the platform allows the application of different lenses which vary the equivalence rules to be applied based on the context and interpretation of the links.
Journal of Cheminformatics | 2016
Floriane Montanari; Barbara Zdrazil; Daniela Digles; Gerhard F. Ecker
BackgroundThe human ATP binding cassette transporters Breast Cancer Resistance Protein (BCRP) and Multidrug Resistance Protein 1 (P-gp) are co-expressed in many tissues and barriers, especially at the blood–brain barrier and at the hepatocyte canalicular membrane. Understanding their interplay in affecting the pharmacokinetics of drugs is of prime interest. In silico tools to predict inhibition and substrate profiles towards BCRP and P-gp might serve as early filters in the drug discovery and development process. However, to build such models, pharmacological data must be collected for both targets, which is a tedious task, often involving manual and poorly reproducible steps.ResultsCompounds with inhibitory activity measured against BCRP and/or P-gp were retrieved by combining Open Data and manually curated data from literature using a KNIME workflow. After determination of compound overlap, machine learning approaches were used to establish multi-label classification models for BCRP/P-gp. Different ways of addressing multi-label problems are explored and compared: label-powerset, binary relevance and classifiers chain. Label-powerset revealed important molecular features for selective or polyspecific inhibitory activity. In our dataset, only two descriptors (the numbers of hydrophobic and aromatic atoms) were sufficient to separate selective BCRP inhibitors from selective P-gp inhibitors. Also, dual inhibitors share properties with both groups of selective inhibitors. Binary relevance and classifiers chain allow improving the predictivity of the models.ConclusionsThe KNIME workflow proved a useful tool to merge data from diverse sources. It could be used for building multi-label datasets of any set of pharmacological targets for which there is data available either in the open domain or in-house. By applying various multi-label learning algorithms, important molecular features driving transporter selectivity could be retrieved. Finally, using the dataset with missing annotations, predictive models can be derived in cases where no accurate dense dataset is available (not enough data overlap or no well balanced class distribution).Graphical abstract.
Drug Discovery Today: Technologies | 2014
Marta Pinto; Daniela Digles; Gerhard F. Ecker
There is strong evidence that ATP-binding cassette (ABC) transporters play a critical role in the pharmacokinetic and pharmacodynamic properties of many drugs and xenobiotics. Due to their pharmacological role, several computational approaches have been developed to understand and predict the interaction between ABC transporters and their ligands. Here, we provide an overview of the current state of the art of the ligand-based models that, derived from the transport and inhibitory activities of a set of ligands, have been published for ABC transporters.
Drug Discovery Today: Technologies | 2014
Michael Viereck; Anna Gaulton; Daniela Digles; Gerhard F. Ecker
Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.
Archive | 2018
Daniela Digles; Andrei Caracoti; Edgar Jacoby
The Open PHACTS Discovery Platform integrates several public databases, which can be of interest when annotating the results of a phenotypic screening campaign. Workflow tools provide easy-to-customize possibilities to access the platform. Here, we describe how to create such workflows for two different workflow tools (KNIME and Pipeline Pilot), including a protocol to annotate compounds (e.g., phenotypic screening hits) with compound classification, known protein targets, and classifications of the targets.
F1000Research | 2018
Ryan Miller; Peter Woollard; Egon Willighagen; Daniela Digles; Martina Kutmon; Antonis Loizou; Andra Waagmeester; Stefan Senger; Chris T. Evelo
Open PHACTS is a pre-competitive project to answer scientific questions developed recently by the pharmaceutical industry. Having high quality biological interaction information in the Open PHACTS Discovery Platform is needed to answer multiple pathway related questions. To address this, updated WikiPathways data has been added to the platform. This data includes information about biological interactions, such as stimulation and inhibition. The platforms Application Programming Interface (API) was extended with appropriate calls to reference these interactions. These new methods of the Open PHACTS API are available now.