Daniela M. Resende
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela M. Resende.
PLOS ONE | 2011
Jeronimo C. Ruiz; Vívian D'Afonseca; Artur Silva; Amjad Ali; Anne Cybelle Pinto; Anderson Rodrigues dos Santos; Aryanne A. M. C. Rocha; Débora O. Lopes; Fernanda Alves Dorella; Luis G. C. Pacheco; Marcília Pinheiro da Costa; Meritxell Zurita Turk; Núbia Seyffert; Pablo M. R. O. Moraes; Siomar de Castro Soares; Sintia Almeida; Thiago Luiz de Paula Castro; Vinicius Augusto Carvalho de Abreu; Eva Trost; Jan Baumbach; Andreas Tauch; Maria Paula Cruz Schneider; John Anthony McCulloch; Louise Teixeira Cerdeira; Rommel Thiago Jucá Ramos; Adhemar Zerlotini; Anderson J. Dominitini; Daniela M. Resende; Elisângela Monteiro Coser; Luciana Márcia Oliveira
Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
PLOS ONE | 2012
Antônio Martinez de Rezende; Edson Luiz Folador; Daniela M. Resende; Jeronimo C. Ruiz
The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI) study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping) and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks received some degree of functional annotation which represents an important contribution since approximately 60% of Leishmania predicted proteomes has no predicted function.
Journal of Bacteriology | 2011
Ana Paula Reinato Stynen; Andrey Pereira Lage; Robert J. Moore; Antonio Mauro Rezende; Vivian Resende; Patrícia de Cássia Ruy; Nesley Daher; Daniela M. Resende; Sintia Almeida; Siomar de Castro Soares; Vinicius Augusto Carvalho de Abreu; Aryane Aparecida C.Magalhães Rocha; Anderson Rodrigues dos Santos; Eudes Barbosa; Danielle Fonseca Costa; Fernanda Alves Dorella; Anderson Miyoshi; Alex Ranieri Jerônimo Lima; Frederico Davi da Silva Campos; Pablo H.C.G. de Sá; Thiago Souza Lopes; Ryan Mauricio Araujo Rodrigues; Adriana Ribeiro Carneiro; Thiago Leão; Louise Teixeira Cerdeira; Rommel Thiago Jucá Ramos; Artur Silva; Vasco Azevedo; Jeronimo C. Ruiz
Campylobacter fetus subsp. venerealis is the etiologic agent of bovine genital campylobacteriosis, a sexually transmitted disease of cattle that is of worldwide importance. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. venerealis NCTC 10354(T) are reported.
Molecular and Biochemical Parasitology | 2014
Micheline Soares Braga; Leandro Xavier Neves; Jonatan Marques Campos; Bruno Mendes Roatt; Rodrigo Dian de Oliveira Aguiar Soares; Samuel Leôncio Braga; Daniela M. Resende; Alexandre Barbosa Reis; William Castro-Borges
The exoproteome of some Leishmania species has revealed important insights into host-parasite interaction, paving the way for the proposal of novel disease-oriented interventions. The focus of the present investigation constituted the molecular profile of the L. infantum exoproteome revealed by a shotgun proteomic approach. Promastigotes under logarithmic phase of growth were obtained and harvested by centrifugation at different time points. Cell integrity was evaluated through the counting of viable parasites using propidium iodide labeling, followed by flow cytometry analysis. The 6h culture supernatant, operationally defined here as exoproteome, was then conditioned to in solution digestion and the resulting peptides submitted to mass spectrometry. A total of 102 proteins were identified and categorized according to their cellular function. Their relative abundance index (emPAI) allowed inference that the L. infantum exoproteome is a complex mixture dominated by molecules particularly involved in nucleotide metabolism and antioxidant activity. Bioinformatic analyses support that approximately 60% of the identified proteins are secreted, of which, 85% possibly reach the extracellular milieu by means of non-classic pathways. At last, sera from naturally infected animals, carriers of differing clinical forms of Canine Visceral Leishmaniasis (CVL), were used to test the immunogenicity associated to the L. infantum exoproteome. Western blotting experiments revealed that this sub-proteome was useful at discriminating symptomatic animals from those exhibiting other clinical forms of the disease. Collectively, the molecular characterization of the L. infantum exoproteome and the preliminary immunoproteomic assays opened up new research avenues related to treatment, prognosis and diagnosis of CVL.
MicrobiologyOpen | 2014
Fabio O. Morais-Silva; Antonio Mauro Rezende; Catarina Pimentel; Catia I. Santos; Carla Clemente; Ana Varela–Raposo; Daniela M. Resende; Sofia M. da Silva; Luciana Márcia de Oliveira; Marcia Matos; Daniela A. Costa; Orfeu L. Flores; Jer onimo C. Ruiz; Claudina Rodrigues-Pousada
Desulfovibrio gigas is a model organism of sulfate‐reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v‐type ATP‐synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of hydrogenases and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh.
International Journal of Molecular Sciences | 2017
Rory Cristiane Fortes de Brito; Frederico Guimarães; João Velloso; Rodrigo Correa-Oliveira; Jeronimo C. Ruiz; Alexandre Barbosa Reis; Daniela M. Resende
Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. There is no human vaccine available and it is considered by many studies as apotential effective tool for disease control. To discover novel antigens, computational programs have been used in reverse vaccinology strategies. In this work, we developed a validation antigen approach that integrates prediction of B and T cell epitopes, analysis of Protein-Protein Interaction (PPI) networks and metabolic pathways. We selected twenty candidate proteins from Leishmania tested in murine model, with experimental outcome published in the literature. The predictions for CD4+ and CD8+ T cell epitopes were correlated with protection in experimental outcomes. We also mapped immunogenic proteins on PPI networks in order to find Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with them. Our results suggest that non-protective antigens have lowest frequency of predicted T CD4+ and T CD8+ epitopes, compared with protective ones. T CD4+ and T CD8+ cells are more related to leishmaniasis protection in experimental outcomes than B cell predicted epitopes. Considering KEGG analysis, the proteins considered protective are connected to nodes with few pathways, including those associated with ribosome biosynthesis and purine metabolism.
Genome Announcements | 2016
Luciana M. Oliveira; Daniela M. Resende; Elaine Maria Seles Dorneles; Elvira Cynthia Alves Horácio; Fernanda Lourenço Alves; Leilane Oliveira Gonçalves; Grace Santos Tavares; Ana Paula Reinato Stynen; Andrey Pereira Lage; Jeronimo C. Ruiz
ABSTRACT Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here.
PLOS ONE | 2017
Gardênia Braz Figueiredo de Carvalho; Daniela M. Resende; Liliane Maria Vidal Siqueira; Marcelo Donizete Lopes; Débora de Oliveira Lopes; Paulo Marcos Zech Coelho; Andréa Teixeira-Carvalho; Jeronimo C. Ruiz; Cristina Toscano Fonseca
In order to effectively control and monitor schistosomiasis, new diagnostic methods are essential. Taking advantage of computational approaches provided by immunoinformatics and considering the availability of Schistosoma mansoni predicted proteome information, candidate antigens of schistosomiasis were selected and used in immunodiagnosis tests based on Enzime-linked Immunosorbent Assay (ELISA). The computational selection strategy was based on signal peptide prediction; low similarity to human proteins; B- and T-cell epitope prediction; location and expression in different parasite life stages within definitive host. Results of the above-mentioned analysis were parsed to extract meaningful biological information and loaded into a relational database developed to integrate them. In the end, seven proteins were selected and one B-cell linear epitope from each one of them was selected using B-cell epitope score and the presence of intrinsically disordered regions (IDRs). These predicted epitopes generated synthetic peptides that were used in ELISA assays to validate the rational strategy of in silico selection. ELISA was performed using sera from residents of areas of low endemicity for S. mansoni infection and also from healthy donors (HD), not living in an endemic area for schistosomiasis. Discrimination of negative (NEG) and positive (INF) individuals from endemic areas was performed using parasitological and molecular methods. All infected individuals were treated with praziquantel, and serum samples were obtained from them 30 and 180 days post-treatment (30DPT and 180DPT). Results revealed higher IgG levels in INF group than in HD and NEG groups when peptides 1, 3, 4, 5 and 7 were used. Moreover, using peptide 5, ELISA achieved the best performance, since it could discriminate between individuals living in an endemic area that were actively infected from those that were not (NEG, 30DPT, 180DPT groups). Our experimental results also indicate that the computational prediction approach developed is feasible for identifying promising candidates for the diagnosis of schistosomiasis and other diseases.
Memorias Do Instituto Oswaldo Cruz | 2017
Leilane Oliveira Gonçalves; Luciana Márcia Oliveira; Grasielle Caldas DÁvila Pessoa; Aline Cristine Luiz Rosa; Marinely Gomez Bustamante; Carlota Josefovicz Belisário; Daniela M. Resende; Liléia Diotaiuti; Jeronimo C. Ruiz
ABSTRACT Triatoma infestans is an insect of subfamily Triatominae (Hemiptera: Reduviidae) and an important vector of Trypanosoma cruzi, the etiologic agent of human Chagas disease. In this work we reported a transcriptome assembly and annotation of T. infestans heads obtained by Next Generation Sequencing (NGS) technologies.
Frontiers in Immunology | 2018
Rory Cristiane Fortes de Brito; Jamille Mirelle de Oliveira Cardoso; Levi Eduardo Soares Reis; Joao F. Vieira; Fernando Augusto Siqueira Mathias; Bruno Mendes Roatt; Rodrigo Dian de Oliveira Aguiar-Soares; Jeronimo C. Ruiz; Daniela M. Resende; Alexandre Barbosa Reis
Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.