Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernanda Alves Dorella is active.

Publication


Featured researches published by Fernanda Alves Dorella.


Journal of Bacteriology | 2012

Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia

Eva Trost; Jochen Blom; Siomar de Castro Soares; I-Hsiu Huang; Arwa Al-Dilaimi; Jasmin Schröder; Sebastian Jaenicke; Fernanda Alves Dorella; Flávia Souza Rocha; Anderson Miyoshi; Vasco Azevedo; Maria Paula Cruz Schneider; Artur Silva; Thereza Cristina Ferreira Camello; Priscila Soares Sabbadini; Cíntia Silva Santos; Louisy Sanches dos Santos; Raphael Hirata; Ana Luiza Mattos-Guaraldi; Androulla Efstratiou; Michael P. Schmitt; Hung Ton-That; Andreas Tauch

Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.


PLOS ONE | 2011

Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

Jeronimo C. Ruiz; Vívian D'Afonseca; Artur Silva; Amjad Ali; Anne Cybelle Pinto; Anderson Rodrigues dos Santos; Aryanne A. M. C. Rocha; Débora O. Lopes; Fernanda Alves Dorella; Luis G. C. Pacheco; Marcília Pinheiro da Costa; Meritxell Zurita Turk; Núbia Seyffert; Pablo M. R. O. Moraes; Siomar de Castro Soares; Sintia Almeida; Thiago Luiz de Paula Castro; Vinicius Augusto Carvalho de Abreu; Eva Trost; Jan Baumbach; Andreas Tauch; Maria Paula Cruz Schneider; John Anthony McCulloch; Louise Teixeira Cerdeira; Rommel Thiago Jucá Ramos; Adhemar Zerlotini; Anderson J. Dominitini; Daniela M. Resende; Elisângela Monteiro Coser; Luciana Márcia Oliveira

Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


BMC Genomics | 2011

Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors.

Eva Trost; Arwa Al-Dilaimi; Panagiotis Papavasiliou; Jessica Schneider; Andreas Burkovski; Siomar de Castro Soares; Sintia Almeida; Fernanda Alves Dorella; Anderson Miyoshi; Vasco Azevedo; Maria Paula Cruz Schneider; Artur Silva; Cíntia Silva Santos; Louisy Sanches dos Santos; Priscila Soares Sabbadini; Alexandre A.S.O. Dias; Raphael Hirata; Ana Luiza Mattos-Guaraldi; Andreas Tauch

BackgroundCorynebacterium ulcerans has been detected as a commensal in domestic and wild animals that may serve as reservoirs for zoonotic infections. During the last decade, the frequency and severity of human infections associated with C. ulcerans appear to be increasing in various countries. As the knowledge of genes contributing to the virulence of this bacterium was very limited, the complete genome sequences of two C. ulcerans strains detected in the metropolitan area of Rio de Janeiro were determined and characterized by comparative genomics: C. ulcerans 809 was initially isolated from an elderly woman with fatal pulmonary infection and C. ulcerans BR-AD22 was recovered from a nasal sample of an asymptomatic dog.ResultsThe circular chromosome of C. ulcerans 809 has a total size of 2,502,095 bp and encodes 2,182 predicted proteins, whereas the genome of C. ulcerans BR-AD22 is 104,279 bp larger and comprises 2,338 protein-coding regions. The minor difference in size of the two genomes is mainly caused by additional prophage-like elements in the C. ulcerans BR-AD22 chromosome. Both genomes show a highly similar order of orthologous coding regions; and both strains share a common set of 2,076 genes, demonstrating their very close relationship. A screening for prominent virulence factors revealed the presence of phospholipase D (Pld), neuraminidase H (NanH), endoglycosidase E (EndoE), and subunits of adhesive pili of the SpaDEF type that are encoded in both C. ulcerans genomes. The rbp gene coding for a putative ribosome-binding protein with striking structural similarity to Shiga-like toxins was additionally detected in the genome of the human isolate C. ulcerans 809.ConclusionsThe molecular data deduced from the complete genome sequences provides considerable knowledge of virulence factors in C. ulcerans that is increasingly recognized as an emerging pathogen. This bacterium is apparently equipped with a broad and varying set of virulence factors, including a novel type of a ribosome-binding protein. Whether the respective protein contributes to the severity of human infections (and a fatal outcome) remains to be elucidated by genetic experiments with defined bacterial mutants and host model systems.


BMC Genomics | 2010

The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

Eva Trost; Lisa Ott; Jessica Schneider; Jasmin Schröder; Sebastian Jaenicke; Alexander Goesmann; Peter Husemann; Jens Stoye; Fernanda Alves Dorella; Flávia Souza Rocha; Siomar de Castro Soares; Vívian D'Afonseca; Anderson Miyoshi; Jerónimo Saiz Ruiz; Artur Silva; Vasco Azevedo; Andreas Burkovski; Nicole Guiso; Olivier Join‐Lambert; Samer Kayal; Andreas Tauch

BackgroundCorynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated.ResultsSequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence.ConclusionThe functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host.


PLOS ONE | 2013

The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains.

Siomar de Castro Soares; Artur Silva; Eva Trost; Jochen Blom; Rommel Thiago Jucá Ramos; Adriana Ribeiro Carneiro; Amjad Ali; Anderson Rodrigues dos Santos; Anne Cybelle Pinto; Carlos R. Diniz; Eudes Guilherme Vieria Barbosa; Fernanda Alves Dorella; Flávia Aburjaile; Flávia Souza Rocha; Karina K F Nascimento; Luis Carlos Guimarães; Sintia Almeida; Syed Shah Hassan; Syeda Marriam Bakhtiar; Ulisses de Pádua Pereira; Vinicius Augusto Carvalho de Abreu; Maria Paula Cruz Schneider; Anderson Miyoshi; Andreas Tauch; Vasco Azevedo

Corynebacterium pseudotuberculosis is a facultative intracellular pathogen and the causative agent of several infectious and contagious chronic diseases, including caseous lymphadenitis, ulcerative lymphangitis, mastitis, and edematous skin disease, in a broad spectrum of hosts. In addition, Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic, and singleton analyses revealed close relationships among pathogenic corynebacteria, the clonal-like behavior of C. pseudotuberculosis and slow increases in the sizes of pan-genomes. According to extrapolations based on the pan-genomes, core genomes and singletons, the C. pseudotuberculosis biovar ovis shows a more clonal-like behavior than the C. pseudotuberculosis biovar equi. Most of the variable genes of the biovar ovis strains were acquired in a block through horizontal gene transfer and are highly conserved, whereas the biovar equi strains contain great variability, both intra- and inter-biovar, in the 16 detected pathogenicity islands (PAIs). With respect to the gene content of the PAIs, the most interesting finding is the high similarity of the pilus genes in the biovar ovis strains compared with the great variability of these genes in the biovar equi strains. Concluding, the polymerization of complete pilus structures in biovar ovis could be responsible for a remarkable ability of these strains to spread throughout host tissues and penetrate cells to live intracellularly, in contrast with the biovar equi, which rarely attacks visceral organs. Intracellularly, the biovar ovis strains are expected to have less contact with other organisms than the biovar equi strains, thereby explaining the significant clonal-like behavior of the biovar ovis strains.


Research in Veterinary Science | 2010

High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA

Núbia Seyffert; Alessandro de Sá Guimarães; Luis G. C. Pacheco; Ricardo Wagner Portela; B.L. Bastos; Fernanda Alves Dorella; Marcos Bryan Heinemann; Andrey Pereira Lage; Aurora Maria Guimarães Gouveia; Roberto Meyer; Anderson Miyoshi; Vasco Azevedo

We conducted a seroepidemiological survey to determine the prevalence of caseous lymphadenitis (CLA) in goat herds in Minas Gerais state, Brazil. Serum samples were collected from goats (n=676) from 108 rural properties in 2001, covering most of the sub-regions of this ca. 586,500 square kilometer state. Antibodies against Corynebacterium pseudotuberculosis secreted proteins were detected by an indirect enzyme-linked immunosorbent assay (ELISA). Most of the animals (78.9%) tested positive for CLA; 98% of flocks presented at least one seropositive animal. Goats managed under an extensive production system had a significantly higher seroprevalence of CLA than those in intensive and semi-intensive operations. The age distribution of the animals in the flocks affected the prevalence of this disease; however, goat breed did not. We found seropositivity against C. pseudotuberculosis to be highly prevalent in these Brazilian goat herds; consequently, appropriate management practices for the control of CLA should be implemented.


Journal of Drug Targeting | 2003

Induction of Partial Protection in Mice after Oral Administration of Lactococcus lactis Producing Brucella abortus L7/L12 Antigen

Daniela Santos Pontes; Fernanda Alves Dorella; Luciana A. Ribeiro; Anderson Miyoshi; Yves Le Loir; Alexandra Gruss; Sergio C. Oliveira; Philippe Langella; Vasco Azevedo

The Brucella abortus ribosomal protein L7/L12 is an immunodominant antigen and an interesting candidate for the development of oral live vaccines against brucellosis. Here, a recombinant Lactococcus lactis strain producing L7/L12 under the control of nisin inducible promoter was orally administered to BALB/c mice. Significant levels of anti-L7/L12 specific IgA detected in feces revealed an induced local humoral immune response. However, serum analysis did not reveal any anti-L7/L12 antibodies suggesting the absence of a systemic response. Nevertheless, the vaccinated mice showed a partial protective immunity against B. abortus virulent strain (S2308) challenged by intraperitoneal inoculation.


Journal of Bacteriology | 2011

Complete Genome Sequence of Corynebacterium pseudotuberculosis I19, a Strain Isolated from a Cow in Israel with Bovine Mastitis

Artur Silva; Maria Paula Cruz Schneider; Louise Teixeira Cerdeira; Maria Silvanira Barbosa; Rommel Thiago Jucá Ramos; Adriana Ribeiro Carneiro; Rodrigo Santos; Marília Lima; Vívian D'Afonseca; Sintia Almeida; Anderson Rodrigues dos Santos; Siomar de Castro Soares; Anne Cybelle Pinto; Amjad Ali; Fernanda Alves Dorella; Flávia Souza Rocha; Vinicius Augusto Carvalho de Abreu; Eva Trost; Andreas Tauch; Nahum Y. Shpigel; Anderson Miyoshi; Vasco Azevedo

This work reports the completion and annotation of the genome sequence of Corynebacterium pseudotuberculosis I19, isolated from an Israeli dairy cow with severe clinical mastitis. To present the whole-genome sequence, a de novo assembly approach using 33 million short (25-bp) mate-paired SOLiD reads only was applied. Furthermore, the automatic, functional, and manual annotations were attained with the use of several algorithms in a multistep process.


Expert Review of Vaccines | 2009

Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development

Fernanda Alves Dorella; Luis Gc Pacheco; Núbia Seyffert; Ricardo Wagner Portela; Roberto Meyer; Anderson Miyoshi; Vasco Azevedo

Corynebacterium pseudotuberculosis continues to cause considerable economic losses in ovine and caprine herds worldwide, causing caseous lymphadenitis. Nevertheless, the immunology of this disease is relatively unknown. Novel antigens may provide vaccines that are more effective and improve diagnostic methods for better control of this disease. The available commercial vaccines are not able to fully protect susceptible animals, cannot be used in all host species and are not licensed for use in many countries. Recent studies on the genomics of C. pseudotuberculosis and on its molecular determinants of virulence should bring us new alternatives for more effective vaccine formulations.


Journal of Biotechnology | 2013

Genome sequence of Corynebacterium pseudotuberculosis biovar equi strain 258 and prediction of antigenic targets to improve biotechnological vaccine production.

Siomar de Castro Soares; Eva Trost; Rommel Thiago Jucá Ramos; Adriana Ribeiro Carneiro; Anderson Rodrigues dos Santos; Anne Cybelle Pinto; Eudes Barbosa; Flávia Aburjaile; Amjad Ali; Carlos Augusto Almeida Diniz; Syed Shah Hassan; Karina Fiaux; Luis Carlos Guimarães; Syeda Marriam Bakhtiar; Ulisses de Pádua Pereira; Sintia Almeida; Vinicius Augusto Carvalho de Abreu; Flávia Souza Rocha; Fernanda Alves Dorella; Anderson Miyoshi; Artur Silva; Vasco Azevedo; Andreas Tauch

Corynebacterium pseudotuberculosis is the causative agent of several veterinary diseases in a broad range of economically important hosts, which can vary from caseous lymphadenitis in sheep and goats (biovar ovis) to ulcerative lymphangitis in cattle and horses (biovar equi). Existing vaccines against C. pseudotuberculosis are mainly intended for small ruminants and, even in these hosts, they still present remarkable limitations. In this study, we present the complete genome sequence of C. pseudotuberculosis biovar equi strain 258, isolated from a horse with ulcerative lymphangitis. The genome has a total size of 2,314,404 bp and contains 2088 predicted protein-coding regions. Using in silico analysis, eleven pathogenicity islands were detected in the genome sequence of C. pseudotuberculosis 258. The application of a reverse vaccinology strategy identified 49 putative antigenic proteins, which can be used as candidate vaccine targets in future works.

Collaboration


Dive into the Fernanda Alves Dorella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anderson Miyoshi

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Siomar de Castro Soares

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Artur Silva

Federal University of Maranhão

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe L. Pereira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Flávia Souza Rocha

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sintia Almeida

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge