Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Ponce-Balbuena is active.

Publication


Featured researches published by Daniela Ponce-Balbuena.


Circulation | 2014

Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation

Raphael Martins; Kuljeet Kaur; Elliot Hwang; Rafael J. Ramirez; B. Cicero Willis; David Filgueiras-Rama; Steven R. Ennis; Yoshio Takemoto; Daniela Ponce-Balbuena; Manuel Zarzoso; Ryan P. O’Connell; Hassan Musa; Guadalupe Guerrero-Serna; Uma Mahesh R. Avula; Michael F. Swartz; Sandesh Bhushal; Makarand Deo; Sandeep V. Pandit; Omer Berenfeld; José Jalife

Background— Little is known about the mechanisms underlying the transition from paroxysmal to persistent atrial fibrillation (AF). In an ovine model of long-standing persistent AF we tested the hypothesis that the rate of electric and structural remodeling, assessed by dominant frequency (DF) changes, determines the time at which AF becomes persistent. Methods and Results— Self-sustained AF was induced by atrial tachypacing. Seven sheep were euthanized 11.5±2.3 days after the transition to persistent AF and without reversal to sinus rhythm; 7 sheep were euthanized after 341.3±16.7 days of long-standing persistent AF. Seven sham-operated animals were in sinus rhythm for 1 year. DF was monitored continuously in each group. Real-time polymerase chain reaction, Western blotting, patch clamping, and histological analyses were used to determine the changes in functional ion channel expression and structural remodeling. Atrial dilatation, mitral valve regurgitation, myocyte hypertrophy, and atrial fibrosis occurred progressively and became statistically significant after the transition to persistent AF, with no evidence for left ventricular dysfunction. DF increased progressively during the paroxysmal-to-persistent AF transition and stabilized when AF became persistent. Importantly, the rate of DF increase correlated strongly with the time to persistent AF. Significant action potential duration abbreviation, secondary to functional ion channel protein expression changes (CaV1.2, NaV1.5, and KV4.2 decrease; Kir2.3 increase), was already present at the transition and persisted for 1 year of follow up. Conclusions— In the sheep model of long-standing persistent AF, the rate of DF increase predicts the time at which AF stabilizes and becomes persistent, reflecting changes in action potential duration and densities of sodium, L-type calcium, and inward rectifier currents.


International Journal of Cardiology | 2014

ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene.

Dan Hu; Hector Barajas-Martinez; Andre Terzic; Sungjo Park; Ryan Pfeiffer; Elena Burashnikov; Yuesheng Wu; Martin Borggrefe; Christian Veltmann; Rainer Schimpf; John J. Cai; Gi Byong Nam; Pramod Deshmukh; Melvin M. Scheinman; Mark Preminger; Jonathan S. Steinberg; Daniela Ponce-Balbuena; Christian Wolpert; Michel Haïssaguerre; José A. Sánchez-Chapula; Charles Antzelevitch

BACKGROUND Genetic defects in KCNJ8, encoding the Kir6.1 subunit of the ATP-sensitive K(+) channel (I(K-ATP)), have previously been associated with early repolarization (ERS) and Brugada (BrS) syndromes. Here we test the hypothesis that genetic variants in ABCC9, encoding the ATP-binding cassette transporter of IK-ATP (SUR2A), are also associated with both BrS and ERS. METHODS AND RESULTS Direct sequencing of all ERS/BrS susceptibility genes was performed on 150 probands and family members. Whole-cell and inside-out patch-clamp methods were used to characterize mutant channels expressed in TSA201-cells. Eight ABCC9 mutations were uncovered in 11 male BrS probands. Four probands, diagnosed with ERS, carried a highly-conserved mutation, V734I-ABCC9. Functional expression of the V734I variant yielded a Mg-ATP IC₅₀ that was 5-fold that of wild-type (WT). An 18-y/o male with global ERS inherited an SCN5A-E1784K mutation from his mother, who displayed long QT intervals, and S1402C-ABCC9 mutation from his father, who displayed an ER pattern. ABCC9-S1402C likewise caused a gain of function of IK-ATP with a shift of ATP IC₅₀ from 8.5 ± 2 mM to 13.4 ± 5 μM (p<0.05). The SCN5A mutation reduced peak INa to 39% of WT (p<0.01), shifted steady-state inactivation by -18.0 mV (p<0.01) and increased late I(Na) from 0.14% to 2.01% of peak I(Na) (p<0.01). CONCLUSION Our study is the first to identify ABCC9 as a susceptibility gene for ERS and BrS. Our findings also suggest that a gain-of-function in I(K-ATP) when coupled with a loss-of-function in SCN5A may underlie type 3 ERS, which is associated with a severe arrhythmic phenotype.


Stem Cell Research | 2013

Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

Alexandra Bizy; Guadalupe Guerrero-Serna; Bin Hu; Daniela Ponce-Balbuena; B. Cicero Willis; Manuel Zarzoso; Rafael J. Ramirez; Michelle F. Sener; Lakshmi Mundada; Matthew Klos; Eric J. Devaney; Karen L. Vikstrom; Todd J. Herron; José Jalife

Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers.


The FASEB Journal | 2010

Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

Sami F. Noujaim; Jeanne A. Stuckey; Daniela Ponce-Balbuena; Tania Ferrer-Villada; Sandeep V. Pandit; Conrado J. Calvo; Krzysztof R. Grzeda; Omer Berenfeld; José A. Sánchez Chapula; José Jalife

Atrial and ventricular tachyarrhythmias can be perpetuated by up‐regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain‐of‐function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch‐clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce‐Balbuena, D., Ferrer‐Villada, T., López‐Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. FASEB J. 24, 4302–4312 (2010). www.fasebj.org


PLOS ONE | 2013

TGF-β1, Released by Myofibroblasts, Differentially Regulates Transcription and Function of Sodium and Potassium Channels in Adult Rat Ventricular Myocytes

Kuljeet Kaur; Manuel Zarzoso; Daniela Ponce-Balbuena; Guadalupe Guerrero-Serna; Luqia Hou; Hassan Musa; José Jalife

Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (INa) density at −40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (Ito) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both INa and Ito. In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased INa density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. INa density was −36.25±2.8 pA/pF in control, −59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and −58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, Ito density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (NaV1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; −77%; p<0.01) and KCND2 (KV4.2; −50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in INa was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel responsible for the transient outward current. The results provide new mechanistic insight into the electrical remodeling associated with myocardial injury.


Journal of Pharmacology and Experimental Therapeutics | 2009

Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.

Daniela Ponce-Balbuena; Tania Ferrer; Aldo A. Rodríguez-Menchaca; Iván A. Aréchiga-Figueroa; José A. Sánchez-Chapula

Tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits the inward rectifier potassium current (IK1) in cardiac myocytes by an unknown mechanism. We characterized the inhibitory effects of tamoxifen on Kir2.1, Kir2.2, and Kir2.3 potassium channels that underlie cardiac IK1. We also studied the effects of 4-hydroxytamoxifen and raloxifene. All three drugs inhibited inward rectifier K+ 2.x (Kir2.x) family members. The order of inhibition for all three drugs was Kir2.3 > Kir2.1 ∼ Kir2.2. The onset of inhibition of Kir2.x current by these compounds was slow (T1/2 ∼ 6 min) and only partially recovered after washout (∼30%). Kir2.x inhibition was concentration-dependent but voltage-independent. The time course and degree of inhibition was independent of external or internal drug application. We tested the hypothesis that tamoxifen interferes with the interaction between the channel and the membrane-delimited channel activator, phosphatidylinositol 4,5-bisphosphate (PIP2). Inhibition of Kir2.3 currents was significantly reduced by a single point mutation of I213L, which enhances Kir2.3 interaction with membrane PIP2. Pretreatment with PIP2 significantly decreased the inhibition induced by tamoxifen, 4-hydroxytamoxifen, and raloxifene on Kir2.3 channels. Pretreatment with spermine (100 μM) decreased the inhibitory effect of tamoxifen on Kir2.1, probably by strengthening the channels interaction with PIP2. In cat atrial and ventricular myocytes, 3 μM tamoxifen inhibited IK1, but the effect was greater in the former than the latter. The data strongly suggest that tamoxifen, its metabolite, and the estrogen receptor inhibitor raloxifene inhibit Kir2.x channels indirectly by interfering with the interaction between the channel and PIP2.


Circulation-arrhythmia and Electrophysiology | 2016

Extracellular Matrix–Mediated Maturation of Human Pluripotent Stem Cell–Derived Cardiac Monolayer Structure and Electrophysiological Function

Todd J. Herron; A.M. Rocha; Katherine Campbell; Daniela Ponce-Balbuena; B. Cicero Willis; Guadalupe Guerrero-Serna; Qinghua Liu; Matt Klos; Hassan Musa; Manuel Zarzoso; Alexandra Bizy; Jamie Furness; Justus Anumonwo; Sergey Mironov; José Jalife

Background—Human pluripotent stem cell–derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Methods and Results—Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of &bgr;1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Conclusions—Maturation of human stem cell–derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers.


Cardiovascular Research | 2011

Structural bases for the different anti-fibrillatory effects of chloroquine and quinidine

Sami F. Noujaim; Jeanne A. Stuckey; Daniela Ponce-Balbuena; Tania Ferrer-Villada; Sandeep V. Pandit; José A. Sánchez-Chapula; José Jalife

AIMS Chloroquine, an anti-malarial quinoline, is structurally similar to quinidine. Both drugs have been shown to block ion channels. We tested the hypothesis that chloroquines mode of interaction with the vestibule of the cytoplasmic domain of the inward rectifier potassium channel Kir2.1 makes it a more effective I(K1) blocker and anti-fibrillatory agent than quinidine. METHODS AND RESULTS We used comparative molecular modelling and ligand docking of the three-dimensional structures of quinidine and chloroquine in the intracellular domain of Kir2.1. Simulations predicted that chloroquine effectively blocks potassium flow by binding at the centre of the ion permeation vestibule of Kir2.1. In contrast, quinidine binds the vestibular side, only partially blocking ion movement. We tested the modelling predictions in Kir2.1-expressing human embryonic kidney (HEK)-293 cells. The half-maximal inhibitory concentration for chloroquine block of I(K1) was 1.2 µM, while that of quinidine was 57 µM. Finally, we used optical mapping of Langendorff-perfused mouse hearts with cardiac-specific Kir2.1 up-regulation to compare the anti-fibrillatory effects of the drugs. In five of six hearts, 10 μM quinidine slowed the frequency but did not terminate the tachyarrhythmia. In five of five hearts, 10 μM chloroquine terminated the arrhythmia, restoring sinus rhythm. CONCLUSION Quinidine only partially blocks I(K1). Chloroquine binds at the centre of the ion permeation vestibule of Kir2.1, which makes it a more effective I(K1) blocker and anti-fibrillatory agent than quinidine. Integrating the structural biology of drug-ion channel interactions with cellular electrophysiology and optical mapping is an excellent approach to understand the molecular mechanisms of anti-arrhythmic drug action and for drug discovery.


JACC: Basic to Translational Science | 2016

Galectin-3 Regulates Atrial Fibrillation Remodeling and Predicts Catheter Ablation Outcomes

Yoshio Takemoto; Rafael J. Ramirez; Miki Yokokawa; Kuljeet Kaur; Daniela Ponce-Balbuena; Mohamad Sinno; B. Cicero Willis; Hamid Ghanbari; Steven R. Ennis; Guadalupe Guerrero-Serna; Bettina C. Henzi; Rakesh Latchamsetty; Roberto Ramos-Mondragón; Hassan Musa; Raphael Martins; Sandeep V. Pandit; Sami F. Noujaim; Thomas Crawford; Krit Jongnarangsin; Frank Pelosi; Frank Bogun; Aman Chugh; Omer Berenfeld; Fred Morady; Hakan Oral; José Jalife

Summary Atrial fibrillation (AF) usually starts as paroxysmal but can evolve relentlessly to the persistent and permanent forms. However, the mechanisms governing such a transition are unknown. The authors show that intracardiac serum levels of galectin (Gal)-3 are greater in patients with persistent than paroxysmal AF and that Gal-3 independently predicts atrial tachyarrhythmia recurrences after a single ablation procedure. Using a sheep model of persistent AF the authors further demonstrate that upstream therapy targeting Gal-3 diminishes both electrical remodeling and fibrosis by impairing transforming growth factor beta–mediated signaling and reducing myofibroblast activation. Accordingly, Gal-3 inhibition therapy increases the probability of AF termination and reduces the overall burden of AF. Therefore the authors postulate that Gal-3 inhibition is a potential new upstream therapy to prevent AF progression.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis

B. Cicero Willis; Daniela Ponce-Balbuena; José Jalife

The understanding of how cardiac ion channels function in the normal and the diseased heart has greatly increased over the last four decades thanks to the advent of patch-clamp technology and, more recently, the emergence of genetics, as well as cellular and molecular cardiology. However, our knowledge of how these membrane-embedded proteins physically interact with each other within macromolecular complexes remains incomplete. This review focuses on how the main cardiac inward sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) function within macromolecular complexes to control cardiac excitability. It has become increasingly clear that these two important ion channel proteins physically interact with multiple other protein partners and with each other from early stages of protein trafficking and targeting through membrane anchoring, recycling, and degradation. Recent findings include compartmentalized regulation of NaV1.5 channel expression and function through a PDZ (postsynaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein) domain-binding motif, and interaction of caveolin-3 with Kir2.1 and ankyrin-G as a molecular platform for NaV1.5 signaling. At the cardiomyocyte membrane, NaV1.5 and Kir2.1 interact through at least two distinct PDZ domain-scaffolding proteins (synapse-associated protein-97 and α1-syntrophin), thus modulating reciprocally their cell-surface expression at two different microdomains. Emerging evidence also shows that inheritable mutations in plakophilin-2, ankyrin-G, dystrophin, syntrophin, synapse-associated protein-97, and caveolin-3, among others, modify functional expression and/or localization in the cardiac cell of NaV1.5, Kir2.1 or both to give rise to arrhythmogenic diseases. Unveiling the mechanistic underpinnings of macromolecular interactions should increase our understanding of inherited and acquired arrhythmogenic cardiac diseases and may lead to advances in therapy.

Collaboration


Dive into the Daniela Ponce-Balbuena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo A. Rodríguez-Menchaca

Universidad Autónoma de San Luis Potosí

View shared research outputs
Researchain Logo
Decentralizing Knowledge