Tania Ferrer
University of Colima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tania Ferrer.
Heart Rhythm | 2012
Hector Barajas-Martinez; Dan Hu; Tania Ferrer; Carlos G. Onetti; Yuesheng Wu; Elena Burashnikov; Madalene Boyle; Tyler Surman; Janire Urrutia; Christian Veltmann; Rainer Schimpf; Martin Borggrefe; Christian Wolpert; Bassiema Ibrahim; José A. Sánchez-Chapula; Stephen L. Winters; Michel Haïssaguerre; Charles Antzelevitch
BACKGROUND Adenosine triphosphate (ATP)-sensitive potassium cardiac channels consist of inward-rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). OBJECTIVE To examine the association of mutations in KCNJ8 with Brugada syndrome (BrS) and early repolarization syndrome (ERS) and to elucidate the mechanism underlying the gain of function of ATP-sensitive potassium channel current. METHODS Direct sequencing of KCNJ8 and other candidate genes was performed on 204 BrS and ERS probands and family members. Whole-cell and inside-out patch-clamp methods were used to study mutated channels expressed in TSA201 cells. RESULTS The same missense mutation, p.Ser422Leu (c.1265C>T) in KCNJ8, was identified in 3 BrS and 1 ERS probands but was absent in 430 alleles from ethnically matched healthy controls. Additional genetic variants included CACNB2b-D601E. Whole-cell patch-clamp studies showed a 2-fold gain of function of glibenclamide-sensitive ATP-sensitive potassium channel current when KCNJ8-S422L was coexpressed with SUR2A-wild type. Inside-out patch-clamp evaluation yielded a significantly greater half maximal inhibitory concentration for ATP in the mutant channels (785.5 ± 2 vs 38.4 ± 3 μM; n = 5; P <.01), pointing to incomplete closing of the ATP-sensitive potassium channels under normoxic conditions. Patients with a CACNB2b-D601E polymorphism displayed longer QT/corrected QT intervals, likely owing to their effect to induce an increase in L-type calcium channel current (I(Ca-L)). CONCLUSIONS Our results support the hypothesis that KCNJ8 is a susceptibility gene for BrS and ERS and point to S422L as a possible hotspot mutation. Our findings suggest that the S422L-induced gain of function in ATP-sensitive potassium channel current is due to reduced sensitivity to intracellular ATP.
Journal of Pharmacology and Experimental Therapeutics | 2009
Daniela Ponce-Balbuena; Tania Ferrer; Aldo A. Rodríguez-Menchaca; Iván A. Aréchiga-Figueroa; José A. Sánchez-Chapula
Tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits the inward rectifier potassium current (IK1) in cardiac myocytes by an unknown mechanism. We characterized the inhibitory effects of tamoxifen on Kir2.1, Kir2.2, and Kir2.3 potassium channels that underlie cardiac IK1. We also studied the effects of 4-hydroxytamoxifen and raloxifene. All three drugs inhibited inward rectifier K+ 2.x (Kir2.x) family members. The order of inhibition for all three drugs was Kir2.3 > Kir2.1 ∼ Kir2.2. The onset of inhibition of Kir2.x current by these compounds was slow (T1/2 ∼ 6 min) and only partially recovered after washout (∼30%). Kir2.x inhibition was concentration-dependent but voltage-independent. The time course and degree of inhibition was independent of external or internal drug application. We tested the hypothesis that tamoxifen interferes with the interaction between the channel and the membrane-delimited channel activator, phosphatidylinositol 4,5-bisphosphate (PIP2). Inhibition of Kir2.3 currents was significantly reduced by a single point mutation of I213L, which enhances Kir2.3 interaction with membrane PIP2. Pretreatment with PIP2 significantly decreased the inhibition induced by tamoxifen, 4-hydroxytamoxifen, and raloxifene on Kir2.3 channels. Pretreatment with spermine (100 μM) decreased the inhibitory effect of tamoxifen on Kir2.1, probably by strengthening the channels interaction with PIP2. In cat atrial and ventricular myocytes, 3 μM tamoxifen inhibited IK1, but the effect was greater in the former than the latter. The data strongly suggest that tamoxifen, its metabolite, and the estrogen receptor inhibitor raloxifene inhibit Kir2.x channels indirectly by interfering with the interaction between the channel and PIP2.
Journal of Cardiovascular Pharmacology | 2011
Daniela Ponce-Balbuena; Eloy G. Moreno-Galindo; Iván A. Aréchiga-Figueroa; Martín Rodríguez-Martínez; Tania Ferrer; Aldo A. Rodríguez-Menchaca; José A. Sánchez-Chapula
The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.
European Journal of Pharmacology | 2011
Tania Ferrer; Daniela Ponce-Balbuena; Iván A. Aréchiga-Figueroa; Teun P. de Boer; Marcel A.G. van der Heyden; José A. Sánchez-Chapula
Carvedilol, a β- and α-adrenoceptor blocker, is used to treat congestive heart failure, mild to moderate hypertension, and myocardial infarction. It has been proposed to block K(ATP) channels by binding to the bundle crossing region at a domain including cysteine at position 166, and thereby plugging the pore region. However, carvedilol was reported not to affect Kir2.1 channels, which lack 166 Cys. Here, we demonstrate that carvedilol inhibits Kir2.3 carried current by an alternative mechanism. Carvedilol inhibited Kir2.3 channels with at least 100 fold higher potency (IC(50)=0.49 μM) compared to that for Kir2.1 (IC(50)>50 μM). Kir2.3 channel inhibition was concentration-dependent and voltage-independent. Increasing Kir2.3 channel affinity for PIP(2), by a I213L point mutation, decreased the inhibitory effect of carvedilol more than twentyfold (IC(50)=11.1 μM). In the presence of exogenous PIP(2), Kir2.3 channel inhibition by carvedilol was strongly reduced (80 vs. 2% current inhibition). These results suggest that carvedilol, as other cationic amphiphilic drugs, inhibits Kir2.3 channels by interfering with the PIP(2)-channel interaction.
Cellular Physiology and Biochemistry | 2009
Daniela Ponce-Balbuena; Tania Ferrer; Frank B. Sachse; Martin Tristani-Firouzi; José A. Sánchez-Chapula
Short QT Syndrome (SQTS) is a novel clinical entity characterized by markedly rapid cardiac repolarization and lethal arrhythmias. A mutation in the Kir2.1 inward rectifier K+ channel (D172N) causes one form of SQTS (SQT3). Pharmacologic block of Kir2.1 channels may hold promise as potential therapy for SQT3. We recently reported that the anti-malarial drug chloroquine blocks Kir2.1 channels by plugging the cytoplasmic pore domain. In this study, we tested whether chloroquine blocks D172N Kir2.1 channels in a heterologous expression system and if chloroquine normalizes repolarization properties using a mathematical model of a human ventricular myocyte. Chloroquine caused a dose- and voltage-dependent reduction in wild-type (WT), D172N and WT-D172N heteromeric Kir2.1 current. The potency and kinetics of chloroquine block of D172N and WT-D172N Kir2.1 current were similar to WT. In silico modeling of the heterozygous WT-D172N Kir2.1 condition predicted that 3 μM chloroquine normalized inward rectifier K+ current magnitude, action potential duration and effective refractory period. Our results suggest that therapeutic concentrations of chloroquine might lengthen cardiac repolarization in SQT3.
European Journal of Pharmacology | 2010
Daniela Ponce-Balbuena; Tania Ferrer; Aldo A. Rodríguez-Menchaca; José A. Sánchez-Chapula
Thiopental is a well-known intravenous barbiturate anesthetic with important cardiac side effects. The actions of thiopental on the transmembrane ionic currents that determine the resting potential and action potential duration in cardiomyocytes have been studied widely. We aimed at elucidating the characteristics and mechanism of inhibition by thiopental on members of the subfamily of inward rectifying Kir2.x (Kir2.1, 2.2 and 2.3), Kir1.1 and Kir6.2/SUR2A channels. These inward rectifier potassium channels were transfected in HEK-293 cells and macroscopic currents were recorded in the whole-cell and inside-out configurations of the patch-clamp technique. Thiopental inhibited Kir2.1, Kir2.2, Kir2.3, Kir1.1 and Kir6.2/SUR2A currents with similar potency; in whole-cell experiments 30 microM thiopental decreased Kir2.1, Kir2.2, Kir2.3 and Kir1.1 currents to 55+/-6, 39+/-8, 42+/-5 and 49+/-5% at -120 mV, respectively. Point mutations on Kir2.3 (I213L) or Kir2.1 (L222I) did not modify the potency of block. Thiopental inhibited all Kir channels in a concentration-dependent and voltage-independent manner. Also, the time course of thiopental inhibition was slow (T(1/2) approximately 4 min) and independent of external or internal drug application. However, in the presence of PIP(2), inhibition by thiopental on Kir2.1 was significantly decreased. Thiopental at clinically relevant concentrations significantly inhibited all Kir channels evaluated in this work. The reduction of thiopental effects during PIP(2) treatment suggests that thiopental inhibition on Kir2.1 channels is related to channel-PIP(2) interaction.
Acta Physiologica | 2012
Tania Ferrer; R. M. Arín; E. Casis; Julián Torres-Jácome; José A. Sánchez-Chapula; Oscar Casis
Aims: To identify the causes for the inhomogeneity of ventricular repolarization and increased QT dispersion in hypothyroid mice.
Molecular Pharmacology | 2012
Daniela Ponce-Balbuena; Aldo A. Rodríguez-Menchaca; Tania Ferrer; Harley T. Kurata; Colin G. Nichols; José A. Sánchez-Chapula
Chloroquine and related compounds can inhibit inwardly rectifying potassium channels by multiple potential mechanisms, including pore block and allosteric effects on channel gating. Motivated by reports that chloroquine inhibition of cardiac ATP-sensitive inward rectifier K+ current (IKATP) is antifibrillatory in rabbit ventricle, we investigated the mechanism of chloroquine inhibition of ATP-sensitive potassium (KATP) channels (Kir6.2/SUR2A) expressed in human embryonic kidney 293 cells, using inside-out patch-clamp recordings. We found that chloroquine inhibits the Kir6.2/SUR2A channel by interacting with at least two different sites and by two mechanisms of action. A fast-onset effect is observed at depolarized membrane voltages and enhanced by the N160D mutation in the central cavity, probably reflecting direct channel block resulting from the drug entering the channel pore from the cytoplasmic side. Conversely, a slow-onset, voltage-independent inhibition of IKATP is regulated by chloroquine interaction with a different site and probably involves disruption of interactions between Kir6.2/SUR2A and phosphatidylinositol 4,5-bisphosphate. Our findings reveal multiple mechanisms of KATP channel inhibition by chloroquine, highlighting the numerous convergent regulatory mechanisms of these ligand-dependent ion channels.
European Journal of Pharmacology | 2017
Leticia G. Marmolejo-Murillo; Iván A. Aréchiga-Figueroa; Eloy G. Moreno-Galindo; Ricardo A. Navarro-Polanco; Aldo A. Rodríguez-Menchaca; Meng Cui; José A. Sánchez-Chapula; Tania Ferrer
ABSTRACT Kir4.1 channels have been implicated in various physiological processes, mainly in the K+ homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch‐clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK‐293 cells. CQ produced a fast‐onset voltage‐dependent pore‐blocking effect on these channels. In inside‐out patches, CQ showed notable higher potency (IC50 ≈0.5 &mgr;M at +50 mV) and faster onset of block when compared to whole‐cell configuration (IC50 ≈7 &mgr;M at +60 mV). Also, CQ showed a voltage‐dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore‐plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ‐Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.
Journal of Pharmacological and Toxicological Methods | 2014
Aldo A. Rodríguez-Menchaca; Tania Ferrer; Ricardo A. Navarro-Polanco; José A. Sánchez-Chapula; Eloy G. Moreno-Galindo
INTRODUCTION Voltage- and state-dependent blocks are important mechanisms by which drugs affect voltage-gated ionic channels. However, spontaneous (i.e. drug-free) time-dependent changes in the activation and inactivation of hERG and Na(+) channels have been reported when using conventional whole-cell patch-clamp in HEK-293 cells. METHODS hERG channels were heterologously expressed in HEK-293 cells and in Xenopus laevis oocytes. hERG current (IhERG) was recorded using both conventional and perforated whole-cell patch-clamp (HEK-293 cells), and two microelectrode voltage-clamp (Xenopus oocytes) in drug-free solution, and in the presence of the drug trazodone. RESULTS In conventional whole-cell setup, we observed a spontaneous time-dependent hyperpolarizing shift in the activation curve of IhERG. Conversely, in perforated patch whole-cell (HEK-293 cells) or in two microelectrode voltage-clamp (Xenopus oocytes) activation curves of IhERG were very stable for periods ~50min. Voltage-dependent inactivation of IhERG was not significantly altered in the three voltage clamp configurations tested. When comparing voltage- and state-dependent effects of the antidepressant drug trazodone on IhERG, similar changes between the three voltage clamp configurations were observed as under drug-free conditions. DISCUSSION The comparative analysis performed in this work showed that only under conventional whole-cell voltage-clamp conditions, a leftward shift in the activation curve of IhERG occurred, both in the presence and absence of drugs. These spontaneous time-dependent changes in the voltage activation gate of IhERG are a potential confounder in pharmacological studies on hERG channels expressed in HEK-293 cells.