Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela S. Gerhard is active.

Publication


Featured researches published by Daniela S. Gerhard.


Nature Genetics | 2007

A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer

David J. Hunter; Peter Kraft; Kevin B. Jacobs; David G. Cox; Meredith Yeager; Susan E. Hankinson; Sholom Wacholder; Zhaoming Wang; Robert Welch; Amy Hutchinson; Junwen Wang; Kai Yu; Nilanjan Chatterjee; Nick Orr; Walter C. Willett; Graham A. Colditz; Regina G. Ziegler; Christine D. Berg; Saundra S. Buys; Catherine A. McCarty; Heather Spencer Feigelson; Eugenia E. Calle; Michael J. Thun; Richard B. Hayes; Margaret A. Tucker; Daniela S. Gerhard; Joseph F. Fraumeni; Robert N. Hoover; Gilles Thomas; Stephen J. Chanock

We conducted a genome-wide association study (GWAS) of breast cancer by genotyping 528,173 SNPs in 1,145 postmenopausal women of European ancestry with invasive breast cancer and 1,142 controls. We identified four SNPs in intron 2 of FGFR2 (which encodes a receptor tyrosine kinase and is amplified or overexpressed in some breast cancers) that were highly associated with breast cancer and confirmed this association in 1,776 affected individuals and 2,072 controls from three additional studies. Across the four studies, the association with all four SNPs was highly statistically significant (Ptrend for the most strongly associated SNP (rs1219648) = 1.1 × 10−10; population attributable risk = 16%). Four SNPs at other loci most strongly associated with breast cancer in the initial GWAS were not associated in the replication studies. Our summary results from the GWAS are available online in a form that should speed the identification of additional risk loci.


Nature | 2007

Replicating genotype-phenotype associations.

Stephen J. Chanock; Teri A. Manolio; Michael Boehnke; Eric Boerwinkle; David J. Hunter; Gilles Thomas; Joel N. Hirschhorn; Gonçalo R. Abecasis; David Altshuler; Joan E. Bailey-Wilson; Lisa D. Brooks; Lon R. Cardon; Mark J. Daly; Peter Donnelly; Joseph F. Fraumeni; Nelson B. Freimer; Daniela S. Gerhard; Chris Gunter; Alan E. Guttmacher; Mark S. Guyer; Emily L. Harris; Josephine Hoh; Robert N. Hoover; C. Augustine Kong; Kathleen R. Merikangas; Cynthia C. Morton; Lyle J. Palmer; Elizabeth G. Phimister; John P. Rice; Jerry Roberts

What constitutes replication of a genotype–phenotype association, and how best can it be achieved?


Nature Genetics | 2007

Genome-wide association study of prostate cancer identifies a second risk locus at 8q24.

Meredith Yeager; Nick Orr; Richard B. Hayes; Kevin B. Jacobs; Peter Kraft; Sholom Wacholder; Mark J Minichiello; Paul Fearnhead; Kai Yu; Nilanjan Chatterjee; Zhaoming Wang; Robert Welch; Brian Staats; Eugenia E. Calle; Heather Spencer Feigelson; Michael J. Thun; Carmen Rodriguez; Demetrius Albanes; Jarmo Virtamo; Stephanie J. Weinstein; Fredrick R. Schumacher; Edward Giovannucci; Walter C. Willett; Geraldine Cancel-Tassin; Olivier Cussenot; Antoine Valeri; Gerald L. Andriole; Edward P. Gelmann; Margaret A. Tucker; Daniela S. Gerhard

Recently, common variants on human chromosome 8q24 were found to be associated with prostate cancer risk. While conducting a genome-wide association study in the Cancer Genetic Markers of Susceptibility project with 550,000 SNPs in a nested case-control study (1,172 cases and 1,157 controls of European origin), we identified a new association at 8q24 with an independent effect on prostate cancer susceptibility. The most significant signal is 70 kb centromeric to the previously reported SNP, rs1447295, but shows little evidence of linkage disequilibrium with it. A combined analysis with four additional studies (total: 4,296 cases and 4,299 controls) confirms association with prostate cancer for rs6983267 in the centromeric locus (P = 9.42 × 10−13; heterozygote odds ratio (OR): 1.26, 95% confidence interval (c.i.): 1.13–1.41; homozygote OR: 1.58, 95% c.i.: 1.40–1.78). Each SNP remained significant in a joint analysis after adjusting for the other (rs1447295 P = 1.41 × 10−11; rs6983267 P = 6.62 × 10−10). These observations, combined with compelling evidence for a recombination hotspot between the two markers, indicate the presence of at least two independent loci within 8q24 that contribute to prostate cancer in men of European ancestry. We estimate that the population attributable risk of the new locus, marked by rs6983267, is higher than the locus marked by rs1447295 (21% versus 9%).


The New England Journal of Medicine | 2009

Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia

Charles G. Mullighan; Xiaoping Su; Jinghui Zhang; Ina Radtke; Letha A. Phillips; Christopher B. Miller; Jing Ma; Wei Liu; Cheng Cheng; Brenda A. Schulman; Richard C. Harvey; I. Ming Chen; Robert J. Clifford; William L. Carroll; Gregory H. Reaman; W. Paul Bowman; Meenakshi Devidas; Daniela S. Gerhard; Wenjian Yang; Mary V. Relling; D. Pharm; Sheila A. Shurtleff; Dario Campana; Michael J. Borowitz; Ching-Hon Pui; Malcolm A. Smith; Stephen P. Hunger; Cheryl L. Willman; James R. Downing

BACKGROUND Despite best current therapy, up to 20% of pediatric patients with acute lymphoblastic leukemia (ALL) have a relapse. Recent genomewide analyses have identified a high frequency of DNA copy-number abnormalities in ALL, but the prognostic implications of these abnormalities have not been defined. METHODS We studied a cohort of 221 children with high-risk B-cell-progenitor ALL with the use of single-nucleotide-polymorphism microarrays, transcriptional profiling, and resequencing of samples obtained at diagnosis. Children with known very-high-risk ALL subtypes (i.e., BCR-ABL1-positive ALL, hypodiploid ALL, and ALL in infants) were excluded from this cohort. A copy-number abnormality was identified as a predictor of poor outcome, and it was then tested in an independent validation cohort of 258 patients with B-cell-progenitor ALL. RESULTS More than 50 recurring copy-number abnormalities were identified, most commonly involving genes that encode regulators of B-cell development (in 66.8% of patients in the original cohort); PAX5 was involved in 31.7% and IKZF1 in 28.6% of patients. Using copy-number abnormalities, we identified a predictor of poor outcome that was validated in the independent validation cohort. This predictor was strongly associated with alteration of IKZF1, a gene that encodes the lymphoid transcription factor IKAROS. The gene-expression signature of the group of patients with a poor outcome revealed increased expression of hematopoietic stem-cell genes and reduced expression of B-cell-lineage genes, and it was similar to the signature of BCR-ABL1-positive ALL, another high-risk subtype of ALL with a high frequency of IKZF1 deletion. CONCLUSIONS Genetic alteration of IKZF1 is associated with a very poor outcome in B-cell-progenitor ALL.


Nature Genetics | 2008

Multiple loci identified in a genome-wide association study of prostate cancer

Gilles Thomas; Kevin B. Jacobs; Meredith Yeager; Peter Kraft; Sholom Wacholder; Nick Orr; Kai Yu; Nilanjan Chatterjee; Robert Welch; Amy Hutchinson; Andrew Crenshaw; Geraldine Cancel-Tassin; Brian Staats; Zhaoming Wang; Jesus Gonzalez-Bosquet; Jun Fang; Xiang Deng; Sonja I. Berndt; Eugenia E. Calle; Heather Spencer Feigelson; Michael J. Thun; Carmen Rodriguez; Demetrius Albanes; Jarmo Virtamo; Stephanie J. Weinstein; Fredrick R. Schumacher; Edward Giovannucci; Walter C. Willett; Olivier Cussenot; Antoine Valeri

We followed our initial genome-wide association study (GWAS) of 527,869 SNPs on 1,172 individuals with prostate cancer and 1,157 controls of European origin—nested in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial prospective study—by testing 26,958 SNPs in four independent studies (total of 3,941 cases and 3,964 controls). In the combined joint analysis, we confirmed three previously reported loci (two independent SNPs at 8q24 and one in HNF1B (formerly known as TCF2 on 17q); P < 10−10). In addition, loci on chromosomes 7, 10 (two loci) and 11 were highly significant (between P < 7.31 × 10−13 and P < 2.14 × 10−6). Loci on chromosome 10 include MSMB, which encodes β-microseminoprotein, a primary constituent of semen and a proposed prostate cancer biomarker, and CTBP2, a gene with antiapoptotic activity; the locus on chromosome 7 is at JAZF1, a transcriptional repressor that is fused by chromosome translocation to SUZ12 in endometrial cancer. Of the nine loci that showed highly suggestive associations (P < 2.5 × 10−5), four best fit a recessive model and included candidate susceptibility genes: CPNE3, IL16 and CDH13. Our findings point to multiple loci with moderate effects associated with susceptibility to prostate cancer that, taken together, in the future may predict high risk in select individuals.


Science | 2011

The genetic landscape of the childhood cancer medulloblastoma

D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran

Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.


Science | 2010

The Genome of the Western Clawed Frog Xenopus tropicalis

Uffe Hellsten; Richard M. Harland; Michael J. Gilchrist; David A. Hendrix; Jerzy Jurka; Vladimir V. Kapitonov; Ivan Ovcharenko; Nicholas H. Putnam; Shengqiang Shu; Leila Taher; Ira L. Blitz; Bruce Blumberg; Darwin S. Dichmann; Inna Dubchak; Enrique Amaya; John C. Detter; Russell B. Fletcher; Daniela S. Gerhard; David L. Goodstein; Tina Graves; Igor V. Grigoriev; Jane Grimwood; Takeshi Kawashima; Erika Lindquist; Susan Lucas; Paul E. Mead; Therese Mitros; Hajime Ogino; Yuko Ohta; Alexander Poliakov

Frog Genome The African clawed frog Xenopus tropicalis is the first amphibian to have its genome sequenced. Hellsten et al. (p. 633, see the cover) present an analysis of a draft assembly of the genome. The genome of the frog, which is an important model system for developmental biology, encodes over 20,000 protein-coding genes, of which more than 1700 genes have identified human disease associations. Detailed comparison of the content of protein-coding genes with other tetrapods—human and chicken—reveals extensive shared synteny, occasionally spanning entire chromosomes. Assembly, annotation, and analysis of the frog genome compares gene content and synteny with the human and chicken genomes. The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.


Nature Genetics | 2009

A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1).

Gilles Thomas; Kevin B. Jacobs; Peter Kraft; Meredith Yeager; Sholom Wacholder; David G. Cox; Susan E. Hankinson; Amy Hutchinson; Zhaoming Wang; Kai Yu; Nilanjan Chatterjee; Montserrat Garcia-Closas; Jesus Gonzalez-Bosquet; Ludmila Prokunina-Olsson; Nick Orr; Walter C. Willett; Graham A. Colditz; Regina G. Ziegler; Christine D. Berg; Saundra S. Buys; Catherine A. McCarty; Heather Spencer Feigelson; Eugenia E. Calle; Michael J. Thun; Ryan Diver; Ross L. Prentice; Rebecca D. Jackson; Charles Kooperberg; Rowan T. Chlebowski; Jolanta Lissowska

We conducted a three-stage genome-wide association study (GWAS) of breast cancer in 9,770 cases and 10,799 controls in the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. In stage 1, we genotyped 528,173 SNPs in 1,145 cases of invasive breast cancer and 1,142 controls. In stage 2, we analyzed 24,909 top SNPs in 4,547 cases and 4,434 controls. In stage 3, we investigated 21 loci in 4,078 cases and 5,223 controls. Two new loci achieved genome-wide significance. A pericentromeric SNP on chromosome 1p11.2 (rs11249433; P = 6.74 × 10−10 adjusted genotype test, 2 degrees of freedom) resides in a large linkage disequilibrium block neighboring NOTCH2 and FCGR1B; this signal was stronger for estrogen-receptor–positive tumors. A second SNP on chromosome 14q24.1 (rs999737; P = 1.74 × 10−7) localizes to RAD51L1, a gene in the homologous recombination DNA repair pathway. We also confirmed associations with loci on chromosomes 2q35, 5p12, 5q11.2, 8q24, 10q26 and 16q12.1.


Proceedings of the National Academy of Sciences of the United States of America | 2009

JAK mutations in high-risk childhood acute lymphoblastic leukemia

Charles G. Mullighan; Jinghui Zhang; Richard C. Harvey; J. Racquel Collins-Underwood; Brenda A. Schulman; Letha A. Phillips; Sarah K. Tasian; Mignon L. Loh; Xiaoping Su; Wei Liu; Meenakshi Devidas; Susan R. Atlas; I-Ming Chen; Robert J. Clifford; Daniela S. Gerhard; William L. Carroll; Gregory H. Reaman; Malcolm A. Smith; James R. Downing; Stephen P. Hunger; Cheryl L. Willman

Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase. We recently identified a poor prognostic subgroup of pediatric BCR-ABL1-negative ALL patients characterized by deletion of IKZF1 (encoding the lymphoid transcription factor IKAROS) and a gene expression signature similar to BCR-ABL1-positive ALL, raising the possibility of activated tyrosine kinase signaling within this leukemia subtype. Here, we report activating mutations in the Janus kinases JAK1 (n = 3), JAK2 (n = 16), and JAK3 (n = 1) in 20 (10.7%) of 187 BCR-ABL1-negative, high-risk pediatric ALL cases. The JAK1 and JAK2 mutations involved highly conserved residues in the kinase and pseudokinase domains and resulted in constitutive JAK-STAT activation and growth factor independence of Ba/F3-EpoR cells. The presence of JAK mutations was significantly associated with alteration of IKZF1 (70% of all JAK-mutated cases and 87.5% of cases with JAK2 mutations; P = 0.001) and deletion of CDKN2A/B (70% of all JAK-mutated cases and 68.9% of JAK2-mutated cases). The JAK-mutated cases had a gene expression signature similar to BCR-ABL1 pediatric ALL, and they had a poor outcome. These results suggest that inhibition of JAK signaling is a logical target for therapeutic intervention in JAK mutated ALL.


The New England Journal of Medicine | 2014

Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia

Kathryn G. Roberts; Yongjin Li; Debbie Payne-Turner; Richard C. Harvey; Yung-Li Yang; Dehua Pei; Kelly McCastlain; Li Ding; C. Lu; Guangchun Song; Jing Ma; Jared Becksfort; Michael Rusch; Shann-Ching Chen; John Easton; Jinjun Cheng; Kristy Boggs; Natalia Santiago-Morales; Ilaria Iacobucci; Robert S. Fulton; Ji Wen; Marcus B. Valentine; Chieh-Lung Cheng; Steven W. Paugh; Meenakshi Devidas; I. M. Chen; S. Reshmi; Amy Smith; Erin Hedlund; Pankaj Gupta

BACKGROUND Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. METHODS We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL. We examined the functional effects of fusion proteins and the efficacy of tyrosine kinase inhibitors in mouse pre-B cells and xenografts of human Ph-like ALL. RESULTS Ph-like ALL increased in frequency from 10% among children with standard-risk ALL to 27% among young adults with ALL and was associated with a poor outcome. Kinase-activating alterations were identified in 91% of patients with Ph-like ALL; rearrangements involving ABL1, ABL2, CRLF2, CSF1R, EPOR, JAK2, NTRK3, PDGFRB, PTK2B, TSLP, or TYK2 and sequence mutations involving FLT3, IL7R, or SH2B3 were most common. Expression of ABL1, ABL2, CSF1R, JAK2, and PDGFRB fusions resulted in cytokine-independent proliferation and activation of phosphorylated STAT5. Cell lines and human leukemic cells expressing ABL1, ABL2, CSF1R, and PDGFRB fusions were sensitive in vitro to dasatinib, EPOR and JAK2 rearrangements were sensitive to ruxolitinib, and the ETV6-NTRK3 fusion was sensitive to crizotinib. CONCLUSIONS Ph-like ALL was found to be characterized by a range of genomic alterations that activate a limited number of signaling pathways, all of which may be amenable to inhibition with approved tyrosine kinase inhibitors. Trials identifying Ph-like ALL are needed to assess whether adding tyrosine kinase inhibitors to current therapy will improve the survival of patients with this type of leukemia. (Funded by the American Lebanese Syrian Associated Charities and others.).

Collaboration


Dive into the Daniela S. Gerhard's collaboration.

Top Co-Authors

Avatar

Malcolm A. Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jaime M. Guidry Auvil

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tanja M. Davidsen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Soheil Meshinchi

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Charles G. Mullighan

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Jinghui Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Julie M. Gastier-Foster

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yussanne Ma

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Patee Gesuwan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge