Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Schilling is active.

Publication


Featured researches published by Daniela Schilling.


The FASEB Journal | 2009

Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells

Daniela Schilling; Mathias Gehrmann; Claudia Steinem; Antonio De Maio; Ag Pockley; Michael Abend; Michael Molls; Gabriele Multhoff

Hypoxia is well known to limit curability of tumors by ionizing radiation. Here, we show that hypoxia treatment of tumor cells causes coexpression of heat shock protein 70 (Hsp70) and phosphatidylserine (PS) on the cell surface. Colocalization of Hsp70 and PS, as determined by confocal microscopy, also occurs when exogenous FITC‐labeled Hsp70 protein is added to normoxic and hypoxic tumor cells. Moreover, the interaction of Hsp70 with PS was demonstrated in artificial unilamellar phosphatidylcholine/ phosphatidylserine (PC/PS) liposomes at the physiological ratio of 8/2. Indeed, the Hsp70‐liposome interaction gradually increased with elevating PS molar ratios (8/2>7/3<5/5<4/6<3/7<2/8). In contrast, only a weak Hsp70 interaction was detected in phosphatidylcholine/phosphatidylglycerol (PC/PG) liposomes, thus demonstrating that the interaction was not a charge‐related effect. The interaction of Hsp70 with surface PS significantly reduces clonogenic cell survival in normoxic (EC50 of Hsp70=85 μg/ml) and hypoxic (EC50 of Hsp70=55 μg/ml) tumor cells. The radiation‐ induced tumor cell killing was significantly enhanced by the addition of Hsp70 protein (50 μg/ml). Since apoptosis was not significantly enhanced in normoxic and hypoxic tumor cells by the addition of Hsp70, we hypothesize that the Hsp70 protein‐induced reduction in clonogenic cell survival might be through necrosis rather than apoptosis.— Schilling, D.,Gehrmann, M., Steinem, C., De Maio, A., Pockley, A. G., Abend, M., Molls, M., Multhoff, G. Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J. 23, 2467–2477 (2009)


Cancer Letters | 2015

The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation

Gabriele Multhoff; Ag Pockley; Thomas Schmid; Daniela Schilling

Despite enormous progress in radiation technologies (high precision image-guided irradiation, proton irradiation, heavy ion irradiation) and radiotherapeutic concepts (hypofractionated irradiation schemes), the clinical outcome of radiotherapy in locally advanced and metastasized tumors and in hypoxic tumors which are radiation-resistant remains unsatisfactory. Given their key influence on a number of biological and immunological parameters, this article considers the influence of irradiation-induced stress proteins on radiation-induced immunomodulation. Depending on its location, the major stress-inducible Heat shock protein 70 (Hsp70) has been found to fulfill multiple roles. On the one hand, increased intracellular Hsp70 levels have been found to play a key role in the recovery from stress such as radio(chemo)therapy, and on the other hand extracellular Hsp70 proteins are potent stimulators of the innate immune system and mediators of anti-tumor immunity. Furthermore, if loaded with tumor-derived peptides, members of the Heat Shock Protein 70 (HSP70) and 90 (HSP90) families can stimulate the adaptive immune system via antigen cross-presentation. An irradiation-induced enhancement of the selective expression of a membrane form of Hsp70 on the surface of tumor cells which can act as a recognition structure for activated NK cells might have significant clinical relevance, in that the outcome of irradiation therapy for advanced tumors could be improved by combining it with cell-based and other immunotherapies that target this membrane form of Hsp70.


International Journal of Radiation Oncology Biology Physics | 2014

Validation of Heat Shock Protein 70 as a Tumor-Specific Biomarker for Monitoring the Outcome of Radiation Therapy in Tumor Mouse Models

Christine Bayer; Michael E. Liebhardt; Thomas Schmid; Marija Trajkovic-Arsic; Kathrin Hube; Hanno M. Specht; Daniela Schilling; Mathias Gehrmann; Stefan Stangl; Jens T. Siveke; Jan J. Wilkens; Gabriele Multhoff

PURPOSE Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. METHODS AND MATERIALS Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm(3)) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk to 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. RESULTS sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm(3) to 0.66 cm(3) was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. CONCLUSION We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.


Immunogenetics | 2016

The MICA-129Met/Val dimorphism affects plasma membrane expression and shedding of the NKG2D ligand MICA

Antje Isernhagen; Daniela Schilling; Sebastian Monecke; Pranali Shah; Leslie Elsner; Lutz Walter; Gabriele Multhoff; Ralf Dressel

The MHC class I chain-related molecule A (MICA) is a ligand for the activating natural killer (NK) cell receptor NKG2D. A polymorphism causing a valine to methionine exchange at position 129 affects binding to NKG2D, cytotoxicity, interferon-γ release by NK cells and activation of CD8+ T cells. It is known that tumors can escape NKG2D-mediated immune surveillance by proteolytic shedding of MICA. Therefore, we investigated whether this polymorphism affects plasma membrane expression (pmMICA) and shedding of MICA. Expression of pmMICA was higher in a panel of tumor (n = 16, P = 0.0699) and melanoma cell lines (n = 13, P = 0.0429) carrying the MICA-129Val/Val genotype. MICA-129Val homozygous melanoma cell lines released more soluble MICA (sMICA) by shedding (P = 0.0015). MICA-129Met or MICA-129Val isoforms differing only in this amino acid were expressed in the MICA-negative melanoma cell line Malme, and clones with similar pmMICA expression intensity were selected. The MICA-129Met clones released more sMICA (P = 0.0006), and a higher proportion of the MICA-129Met than the MICA-129Val variant was retained in intracellular compartments (P = 0.0199). The MICA-129Met clones also expressed more MICA messenger RNA (P = 0.0047). The latter phenotype was also observed in mouse L cells transfected with the MICA expression constructs (P = 0.0212). In conclusion, the MICA-129Met/Val dimorphism affects the expression density of MICA on the plasma membrane. More of the MICA-129Met variants were retained intracellularly. If expressed at the cell surface, the MICA-129Met isoform was more susceptible to shedding. Both processes appear to limit the cell surface expression of MICA-129Met variants that have a high binding avidity to NKG2D.


Radiation Oncology | 2014

Hsp70 - a biomarker for tumor detection and monitoring of outcome of radiation therapy in patients with squamous cell carcinoma of the head and neck

Mathias Gehrmann; Hanno M. Specht; Christine Bayer; Markus Brandstetter; Barbara Chizzali; Marciana Nona Duma; Stephanie Breuninger; Kathrin Hube; Sophie Lehnerer; Valerie van Phi; Eva K. Sage; Thomas Schmid; Michael Sedelmayr; Daniela Schilling; Wolfgang Sievert; Stefan Stangl; Gabriele Multhoff

BackgroundTumor but not normal cells frequently overexpress heat shock protein 70 (Hsp70) and present it on their cell surface (mHsp70) from where it can be actively released. Therefore, membrane (mHsp70) and soluble Hsp70 (sHsp70) were investigated as potential tumor biomarkers and for monitoring the outcome of radiation therapy.MethodsBiopsies and blood were collected from patients with squamous cell carcinoma of the head and neck (SCCHN) at different time points (before, during therapy and in the follow-up period). Hsp70 membrane expression was determined on single cell suspensions of tumor biopsies and reference tissues by flow cytometry, sHsp70 protein and antibody levels were determined in the serum of patients and healthy donors by ELISA and NK cell markers that are related to the presence of sHsp70 were analyzed in the patient’s peripheral blood lymphocytes (PBL).ResultsTumor biopsies exhibited significantly increased mHsp70 expression levels compared to the reference tissue. Soluble Hsp70 levels were significantly higher in SCCHN patients compared to healthy human volunteers and high mHsp70 expression levels on tumor cells were associated with high sHsp70 levels in the serum of patients. Following surgery and radiotherapy sHsp70 levels in patients dropped in patients without tumor relapse in the follow-up period. In contrast to sHsp70 protein, anti-Hsp70 antibody levels remained nearly unaltered in the serum of SCCHN patients before and after therapy. Furthermore, sHsp70 protein but not anti-Hsp70 antibody levels were found to be associated with the tumor volume in SCCHN patients before start of therapy. The expression densities of the activatory NK cell markers CD56, CD94, NKG2D, NKp30, Nkp44, and NKp46 differed in patients following therapeutic intervention. A significant increase in the density of NKG2D was observed in SCCHN patients in the follow-up period after surgery and radiotherapy.ConclusionWe suggest sHsp70 as a potential biomarker for detecting tumors and for monitoring the clinical outcome of radiotherapy in SCCHN patients.


BMC Cancer | 2007

Induction of plasminogen activator inhibitor type-1 (PAI-1) by hypoxia and irradiation in human head and neck carcinoma cell lines.

Daniela Schilling; Christine Bayer; Anneke Geurts-Moespot; Fred C.G.J. Sweep; Martin Pruschy; Karin Mengele; Lisa D. Sprague; Michael Molls

BackgroundSquamous cell carcinoma of the head and neck (SCCHN) often contain highly radioresistant hypoxic regions, nonetheless, radiotherapy is a common treatment modality for these tumours. Reoxygenation during fractionated radiotherapy is desired to render these hypoxic tumour regions more radiosensitive. Hypoxia additionally leads to up-regulation of PAI-1, a protein involved in tumour progression and an established prognostic marker for poor outcome. However, the impact of reoxygenation and radiation on PAI-1 levels is not yet clear. Therefore, we investigated the kinetics of PAI-1 expression and secretion after hypoxia and reoxygenation, and determined the influence of ionizing radiation on PAI-1 levels in the two human SCCHN cell lines, BHY and FaDu.MethodsHIF-1α immunoblot was used to visualize the degree of hypoxia in the two cell lines. Cellular PAI-1 expression was investigated by immunofluorescence microscopy. ELISA was used to quantify relative changes in PAI-1 expression (cell lysates) and secretion (cell culture supernatants) in response to various lengths (2 – 4 h) of hypoxic exposure (< 0.66 % O2), reoxygenation (24 h, 20 % O2), and radiation (0, 2, 5 and 10 Gy).ResultsHIF-1α expression was induced between 2 and 24 h of hypoxic exposure. Intracellular PAI-1 expression was significantly increased in BHY and FaDu cells as early as 4 h after hypoxic exposure. A significant induction in secreted PAI-1 was seen after 12 to 24 h (BHY) and 8 to 24 h (FaDu) hypoxia, as compared to the normoxic control. A 24 h reoxygenation period caused significantly less PAI-1 secretion than a 24 h hypoxia period in FaDu cells. Irradiation led to an up-regulation of PAI-1 expression and secretion in both, BHY and FaDu cells.ConclusionOur data suggest that both, short-term (~4 – 8 h) and long-term (~20 – 24 h) hypoxic exposure could increase PAI-1 levels in SCCHN in vivo. Importantly, radiation itself could lead to PAI-1 up-regulation in head and neck tumours, whereas reoxygenation of hypoxic tumour cells during fractionated radiotherapy could counteract the increased PAI-1 levels.


Cancer Letters | 2015

Sensitizing tumor cells to radiation by targeting the heat shock response.

Daniela Schilling; Annett Kühnel; Sarah Konrad; Fabian Tetzlaff; Christine Bayer; Julia A. Yaglom; Gabriele Multhoff

Elevated levels of heat shock proteins (HSPs) contribute to tumor cell survival and mediate protection against radiation-induced cell death. Hsp90 inhibitors are promising radiosensitizers but also activate heat shock factor 1 (HSF1) and thereby induce the synthesis of cytoprotective Hsp70. In this study the heat shock response inhibitor NZ28 either alone or in combination with the Hsp90 inhibitor NVP-AUY922 was investigated for radiosensitizing effects, alterations in cell cycle distribution and effects on migratory/invasive capacity of radioresistant tumor cells. NZ28 reduced the constitutive and NVP-AUY922-induced Hsp70 expression by inhibition of the HSF1 activity and inhibited migration and invasion in human lung and breast tumor cells. Treatment of tumor cells with NZ28 significantly increased their radiation response. One possible mechanism might be a decrease of the radioresistant S-phase. When combined with the Hsp90 inhibitor NVP-AUY922 the concentration of NZ28 could be significantly reduced (1/10th-1/20th) to achieve the same radiosensitization. Our results demonstrate that a dual targeting of Hsp70 and Hsp90 with NZ28 and NVP-AUY922 potentiates the radiation response of tumor cells that are otherwise resistant to ionizing radiation.


PLOS ONE | 2012

Radiosensitization of Normoxic and Hypoxic H1339 Lung Tumor Cells by Heat Shock Protein 90 Inhibition Is Independent of Hypoxia Inducible Factor-1α

Daniela Schilling; Christine Bayer; Wei Li; Michael Molls; Peter Vaupel; Gabriele Multhoff

Background Ionizing irradiation is a commonly accepted treatment modality for lung cancer patients. However, the clinical outcome is hampered by normal tissue toxicity and tumor hypoxia. Since tumors often have higher levels of active heat shock protein 90 (Hsp90) than normal tissues, targeting of Hsp90 might provide a promising strategy to sensitize tumors towards irradiation. Hsp90 client proteins include oncogenic signaling proteins, cell cycle activators, growth factor receptors and hypoxia inducible factor-1α (HIF-1α). Overexpression of HIF-1α is assumed to promote malignant transformation and tumor progression and thus might reduce the accessibility to radiotherapy. Methodology/Principal Findings Herein, we describe the effects of the novel Hsp90 inhibitor NVP-AUY922 and 17-allylamino-17-demethoxygeldanamycin (17-AAG), as a control, on HIF-1α levels and radiosensitivity of lung carcinoma cells under normoxic and hypoxic conditions. NVP-AUY922 exhibited a similar biological activity to that of 17-AAG, but at only 1/10 of the dose. As expected, both inhibitors reduced basal and hypoxia-induced HIF-1α levels in EPLC-272H lung carcinoma cells. However, despite a down-regulation of HIF-1α upon Hsp90 inhibition, sensitivity towards irradiation remained unaltered in EPLC-272H cells under normoxic and hypoxic conditions. In contrast, treatment of H1339 lung carcinoma cells with NVP-AUY922 and 17-AAG resulted in a significant up-regulation of their initially high HIF-1α levels and a concomitant increase in radiosensitivity. Conclusions/Significance In summary, our data show a HIF-1α-independent radiosensitization of normoxic and hypoxic H1339 lung cancer cells by Hsp90 inhibition.


Cancer Immunology, Immunotherapy | 2015

NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells

Daniela Schilling; Annett Kühnel; Fabian Tetzlaff; Sarah Konrad; Gabriele Multhoff

Abstract The activity of natural killer (NK) cells is regulated by activating and inhibiting receptors, whereby the C-type lectin natural killer group 2D (NKG2D) receptor serves as the major activating receptor on NK cells which recognizes major histocompatibility class I chain-related proteins A and B (MICA/B). The MICA/B expression has been described to be regulated by the transcription factor heat shock factor 1 (HSF1). Inhibition of heat shock protein 90 (Hsp90) is known to induce the heat shock response via activation of HSF1 which is associated with tumor development, metastasis and therapy resistance and also with an increased susceptibility to NK cell-mediated lysis. Therefore, we compared the effects of Hsp90 inhibitor NVP-AUY922, HSF1 inhibitor NZ28 and HSF1 knockdown on the sensitivity of lung (H1339) and breast (MDA-MB-231, T47D) cancer cells to NK cell-mediated cytotoxicity and the expression of the NKG2D ligands MICA/B. Although NVP-AUY922 activates HSF1, neither the MICA/B surface density on tumor cells nor their susceptibility to NK cell-mediated lysis was affected. A single knockdown of HSF1 by shRNA decreased the surface expression of MICB but not that of MICA, and thereby, the NK cell-mediated lysis was only partially blocked. In contrast, NZ28 completely blocked the MICA/B membrane expression on tumor cells and thereby strongly inhibited the NK cell-mediated cytotoxicity. This effect might be explained by a simultaneous inhibition of the transcription factors HSF1, Sp1 and NF-κB by NZ28. These findings suggest that new anticancer therapeutics should be investigated with respect to their effects on the innate immune system.


International Journal of Radiation Oncology Biology Physics | 2010

Irradiation-Induced Regulation of Plasminogen Activator Inhibitor Type-1 and Vascular Endothelial Growth Factor in Six Human Squamous Cell Carcinoma Lines of the Head and Neck

Tuuli Artman; Daniela Schilling; Julia Gnann; Michael Molls; Gabriele Multhoff; Christine Bayer

PURPOSE It has been shown that plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are involved in neo-angiogenesis. The aim of this study was to investigate the irradiation-induced regulation of PAI-1 and VEGF in squamous cell carcinomas of the head and neck (SCCHN) cell lines of varying radiation sensitivity. METHODS AND MATERIALS Six cell lines derived from SCCHN were investigated in vitro. The colorimetric AlamarBlue assay was used to detect metabolic activity of cell lines during irradiation as a surrogate marker for radiation sensitivity. PAI-1 and VEGF secretion levels were measured by enzyme-linked immunosorbent assay 24, 48, and 72 h after irradiation with 0, 2, 6, and 10 Gy. The direct radioprotective effect of exogenous PAI-1 was measured using the clonogenic assay. For regulation studies, transforming growth factor-beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), hypoxia-inducible factor-2alpha (HIF-2alpha), or both HIF-1alpha and HIF-2alpha were downregulated using siRNA. RESULTS Although baseline levels varied greatly, irradiation led to a comparable dose-dependent increase in PAI-1 and VEGF secretion in all six cell lines. Addition of exogenous stable PAI-1 to the low PAI-1-expressing cell lines, XF354 and FaDu, did not lead to a radioprotective effect. Downregulation of TGF-beta1 significantly decreased VEGF secretion in radiation-sensitive XF354 cells, and downregulation of HIF-1alpha and HIF-2alpha reduced PAI-1 and VEGF secretion in radiation-resistant SAS cells. CONCLUSIONS Irradiation dose-dependently increased PAI-1 and VEGF secretion in all SCCHN cell lines tested regardless of their basal levels and radiation sensitivity. In addition, TGF-beta1 and HIF-1alpha could be partly responsible for VEGF and PAI-1 upregulation after irradiation.

Collaboration


Dive into the Daniela Schilling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred C.G.J. Sweep

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Ala Yaromina

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Wei Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Bayer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Daniel Zips

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Michael Baumann

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Pranali Shah

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ralf Dressel

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge