Daniele Fausti
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniele Fausti.
Nature Materials | 2013
S. de Jong; Roopali Kukreja; Christoph Trabant; N. Pontius; C. F. Chang; T. Kachel; M. Beye; F. Sorgenfrei; C. H. Back; Björn Bräuer; W. F. Schlotter; J. J. Turner; O. Krupin; M. Doehler; Diling Zhu; M. A. Hossain; Andreas Scherz; Daniele Fausti; Fabio Novelli; Martina Esposito; Wei-Sheng Lee; Yi-De Chuang; D. H. Lu; R. G. Moore; M. Yi; M. Trigo; Patrick S. Kirchmann; L. Pathey; M. S. Golden; M. Buchholz
As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.
Advances in Physics | 2016
Claudio Giannetti; Massimo Capone; Daniele Fausti; Michele Fabrizio; F. Parmigiani; Dragan Mihailovic
In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials. The possibility of obtaining simultaneously spectroscopic and temporal information has led to insights that are complementary to (and in several cases beyond) those attainable by studying the matter at equilibrium. From this perspective, multiple phase transitions and new orders arising from competing interactions are benchmark examples where the interplay among electrons, lattice and spin dynamics can be disentangled because of the different timescales that characterize the recovery of the initial ground state. For example, the nature of the broken-symmetry phases and of the bosonic excitations that mediate the electronic interactions, eventually leading to superconductivity or other exotic states, can be revealed by observing the sub-picosecond dynamics of impulsively excited states. Furthermore, recent experimental and theoretical developments have made it possible to monitor the time-evolution of both the single-particle and collective excitations under extreme conditions, such as those arising from strong and selective photo-stimulation. These developments are opening the way for new, non-equilibrium phenomena that can eventually be induced and manipulated by short laser pulses. Here, we review the most recent achievements in the experimental and theoretical studies of the non-equilibrium electronic, optical, structural and magnetic properties of correlated materials. The focus will be mainly on the prototypical case of correlated oxides that exhibit unconventional superconductivity or other exotic phases. The discussion will also extend to other topical systems, such as iron-based and organic superconductors, and charge-transfer insulators. With this review, the dramatically growing demand for novel experimental tools and theoretical methods, models and concepts, will clearly emerge. In particular, the necessity of extending the actual experimental capabilities and the numerical and analytic tools to microscopically treat the non-equilibrium phenomena beyond the simple phenomenological approaches represents one of the most challenging new frontiers in physics.
Physical Review B | 2008
T. T. A. Lummen; I. P. Handayani; Michiel C. Donker; Daniele Fausti; G. Dhalenne; P. Berthet; A. Revcolevschi; P.H.M. van Loosdrecht
The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd(2)Ti(2)O(7), Tb(2)Ti(2)O(7), Dy(2)Ti(2)O(7), and Ho(2)Ti(2)O(7) are used for characterization, while Raman spectroscopy and terahertz time domain spectroscopy are employed to probe the excitations in the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R(2)Ti(2)O(7) pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb(2)Ti(2)O(7) in Raman spectroscopy, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb(3+) sites in the low-temperature structure. Furthermore, the crystal field level at approximately 13 cm(-1) is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb(2)Ti(2)O(7). The additional crystal field information on Tb(2)Ti(2)O(7) adds to the recent discussion on the low temperature symmetry of this system and may serve to improve its theoretical understanding.
Physical Review B | 2010
U. Adem; L. Wang; Daniele Fausti; W. Schottenhamel; P.H.M. van Loosdrecht; A. N. Vasiliev; L. N. Bezmaternykh; Bernd Buechner; C. Hess; R. Klingeler; B. Büchner
We have studied the magnetodielectric and magnetoelastic coupling in TbFe3(BO3)(4) single crystals by means of capacitance, magnetostriction, and Raman spectroscopy measurements. The data reveal strong magnetic field effects on the dielectric constant and on the macroscopic sample length which are associated to long-range magnetic ordering and a field-driven metamagnetic transition. We discuss the coupling of the dielectric, structural, and magnetic order parameters and attribute the origin of the magnetodielectric coupling to phonon mode shifts according to the Lyddane-Sachs-Teller relation.
Physical Review Letters | 2005
Francesco Banfi; Claudio Giannetti; Gabriele Ferrini; Gianluca Galimberti; S. Pagliara; Daniele Fausti; F. Parmigiani
Nonlinear photoemission from a silver single crystal is investigated by femtosecond laser pulses in a perturbative regime. A clear observation of above-threshold photoemission in solids is reported for the first time. The ratio between the three-photon above-threshold and the two-photon Fermi edges is found to be 10(-4). This value constitutes the only available benchmark for theories aimed at understanding the mechanism responsible for above-threshold photoemission in solids.
Scientific Reports | 2013
Fabio Novelli; Daniele Fausti; Francesca Giusti; F. Parmigiani; Matthias W. Hoffmann
Significant changes of the optical properties of semiconductors can be observed by applying strong electric fields capable to modify the band structure at equilibrium. This is known as the Franz-Keldysh effect (FKE). Here we study the FKE in bulk GaAs by combining single cycle THz pumps and broadband optical probes. The experiments show that the phase content of the selected electromagnetic pulses can be used to measure the timescales characteristic for the different regimes of matter-light interactions. Furthermore, the present phase-resolved measurements allow to identify a novel regime of saturation where memory effects are of relevance.
Nature Communications | 2014
Fabio Novelli; Giulio De Filippis; V. Cataudella; Martina Esposito; Ignacio Vergara; Federico Cilento; Enrico Sindici; A. Amaricci; Claudio Giannetti; D. Prabhakaran; Simon Wall; A. Perucchi; Stefano Dal Conte; Giulio Cerullo; Massimo Capone; A. S. Mishchenko; M. Grüninger; Naoto Nagaosa; F. Parmigiani; Daniele Fausti
The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO(4+δ)), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.
Physical Review B | 2012
Fabio Novelli; Daniele Fausti; Julia Reul; Federico Cilento; Paul H. M. van Loosdrecht; A. A. Nugroho; Thomas Palstra; M. Grueninger; F. Parmigiani
We use broadband ultra-fast pump-probe spectroscopy in the visible range to study the lowest excitations across the Mott-Hubbard gap in the orbitally ordered insulator YVO3. Separating thermal and non-thermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e. a resonance or bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin-disorder can be used to quantify the kinetic energy gain of the excitons in the ferromagnetic phase.
New Journal of Physics | 2008
D.M. Sagar; Daniele Fausti; S. Yue; C. A. Kuntscher; S. van Smaalen; P.H.M. van Loosdrecht
We report a comparative Raman spectroscopic study of the quasi-one-dimensional charge-density-wave (CDW) systems A0.3MoO3 (A?=?K, Rb). Temperature- and polarization-dependent experiments reveal charge-coupled vibrational Raman features. The strongly temperature-dependent collective amplitudon modes in the two materials differ by about 3?cm?1, thus revealing the role of the alkali atom. We discuss the observed vibrational features in terms of the CDW ground state accompanied by a change in the crystal symmetry. A frequency-kink in some modes seen in K0.3MoO3 between T?=?80 and 100?K supports the first-order lock-in transition, unlike the case of Rb0.3MoO3. The unusually sharp Raman lines (limited by the instrumental response) at very low temperatures and their temperature evolution suggests that the decay of the low-energy phonons is strongly influenced by the presence of the temperature-dependent CDW gap.
Physical Review B | 2012
Fabio Novelli; Daniele Fausti; Julia Reul; Federico Cilento; P.H.M. van Loosdrecht; A. A. Nugroho; Thomas Palstra; M. Grüninger; Fulivo Parmigiani
We use broadband ultra-fast pump-probe spectroscopy in the visible range to study the lowest excitations across the Mott-Hubbard gap in the orbitally ordered insulator YVO3. Separating thermal and non-thermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e. a resonance or bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin-disorder can be used to quantify the kinetic energy gain of the excitons in the ferromagnetic phase.