Martina Esposito
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martina Esposito.
Nature Materials | 2013
S. de Jong; Roopali Kukreja; Christoph Trabant; N. Pontius; C. F. Chang; T. Kachel; M. Beye; F. Sorgenfrei; C. H. Back; Björn Bräuer; W. F. Schlotter; J. J. Turner; O. Krupin; M. Doehler; Diling Zhu; M. A. Hossain; Andreas Scherz; Daniele Fausti; Fabio Novelli; Martina Esposito; Wei-Sheng Lee; Yi-De Chuang; D. H. Lu; R. G. Moore; M. Yi; M. Trigo; Patrick S. Kirchmann; L. Pathey; M. S. Golden; M. Buchholz
As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.
Nature Communications | 2014
Fabio Novelli; Giulio De Filippis; V. Cataudella; Martina Esposito; Ignacio Vergara; Federico Cilento; Enrico Sindici; A. Amaricci; Claudio Giannetti; D. Prabhakaran; Simon Wall; A. Perucchi; Stefano Dal Conte; Giulio Cerullo; Massimo Capone; A. S. Mishchenko; M. Grüninger; Naoto Nagaosa; F. Parmigiani; Daniele Fausti
The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO(4+δ)), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.
Physical Review B | 2016
Francesco Randi; Ignacio Vergara; Fabio Novelli; Martina Esposito; Martina Dell'Angela; V. A. M. Brabers; P. Metcalf; Roopali Kukreja; Hermann A. Dürr; Daniele Fausti; M. Grüninger; F. Parmigiani
We present equilibrium and out-of-equilibrium studies of the Verwey transition in magnetite. In the equilibrium optical conductivity, we find a steplike change at the phase transition for photon energies below about 2 eV. The possibility of triggering a nonequilibrium transient metallic state in insulating magnetite by photo excitation was recently demonstrated by an x-ray study. Here we report a full characterization of the optical properties in the visible frequency range across the nonequilibrium phase transition. Our analysis of the spectral features is based on a detailed description of the equilibrium properties. The out-of-equilibrium optical data bear the initial electronic response associated to localized photoexcitation, the occurrence of phase separation, and the transition to a transient metallic phase for excitation density larger than a critical value. This allows us to identify the electronic nature of the transient state, to unveil the phase transition dynamics, and to study the consequences of phase separation on the reflectivity, suggesting a spectroscopic feature that may be generally linked to out-of-equilibrium phase separation.
Nature Communications | 2015
Martina Esposito; Kelvin Titimbo; Klaus Zimmermann; Francesca Giusti; Francesco Randi; Davide Boschetto; F. Parmigiani; Roberto Floreanini; Fabio Benatti; Daniele Fausti
Fluctuations of the atomic positions are at the core of a large class of unusual material properties ranging from quantum para-electricity to high temperature superconductivity. Their measurement in solids is the subject of an intense scientific debate focused on seeking a methodology capable of establishing a direct link between the variance of the atomic displacements and experimentally measurable observables. Here we address this issue by means of non-equilibrium optical experiments performed in shot-noise-limited regime. The variance of the time-dependent atomic positions and momenta is directly mapped into the quantum fluctuations of the photon number of the scattered probing light. A fully quantum description of the non-linear interaction between photonic and phononic fields is benchmarked by unveiling the squeezing of thermal phonons in α-quartz.
New Journal of Physics | 2014
Martina Esposito; Fabio Benatti; Roberto Floreanini; Stefano Olivares; Francesco Randi; Kelvin Titimbo; Marco Pividori; Fabio Novelli; Federico Cilento; F. Parmigiani; Daniele Fausti
Pulsed homodyne quantum tomography usually requires a high detection efficiency, limiting its applicability in quantum optics. Here, it is shown that the presence of low detection efficiency () does not prevent the tomographic reconstruction of quantum states of light, specifically, of Gaussian states. This result is obtained by applying the so-called ?minimax? adaptive reconstruction of the Wigner function to pulsed homodyne detection. In particular, we prove, by both numerical and real experiments, that an effective discrimination of different Gaussian quantum states can be achieved. Our finding paves the way to a more extensive use of quantum tomographic methods, even in physical situations in which high detection efficiency is unattainable.
Physical Review Letters | 2017
Francesco Randi; Martina Esposito; Francesca Giusti; O. V. Misochko; F. Parmigiani; Daniele Fausti; Martin Eckstein
We show that, in optical pump-probe experiments on bulk samples, the statistical distribution of the intensity of ultrashort light pulses after interaction with a nonequilibrium complex material can be used to measure the time-dependent noise of the current in the system. We illustrate the general arguments for a photoexcited Peierls material. The transient noise spectroscopy allows us to measure to what extent electronic degrees of freedom dynamically obey the fluctuation-dissipation theorem, and how well they thermalize during the coherent lattice vibrations. The proposed statistical measurement developed here provides a new general framework to retrieve dynamical information on the excited distributions in nonequilibrium experiments, which could be extended to other degrees of freedom of magnetic or vibrational origin.
EPJ Quantum Technology | 2016
Martina Esposito; Francesco Randi; Kelvin Titimbo; Georgios Kourousias; Alessio Curri; Roberto Floreanini; F. Parmigiani; Daniele Fausti; Klaus Zimmermann; Fabio Benatti
Optical homodyne tomography consists in reconstructing the quantum state of an optical field from repeated measurements of its amplitude at different field phases (homodyne data). The experimental noise, which unavoidably affects the homodyne data, leads to a detection efficiency η<1
arXiv: Optics | 2013
Martina Esposito; Daniele Fausti; Stefano Olivares; Fabio Benatti; Roberto Floreanini; Fabio Novelli; Federico Cilento; Francesco Randi; F. Parmigiani
\eta<1
arXiv: Quantum Physics | 2018
Filippo Glerean; Stefano Marcantoni; Giorgia Sparapassi; Andrea Blason; Martina Esposito; Fabio Benatti; Daniele Fausti
. The problem of reconstructing quantum states from noisy homodyne data sets prompted an intense scientific debate about the presence or absence of a lower homodyne efficiency bound (η>0.5
New Journal of Physics | 2017
Fabio Benatti; Martina Esposito; Daniele Fausti; Roberto Floreanini; Kelvin Titimbo; Klaus Zimmermann
\eta> 0.5