Daniele P. Castro
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniele P. Castro.
Parasites & Vectors | 2015
Marcia Gumiel; Fabio Faria da Mota; Vanessa de Sousa Rizzo; Otília Sarquis; Daniele P. Castro; Marli Maria Lima; Eloi S. Garcia; Nicolas Carels; Patrícia Azambuja
BackgroundChagas disease is caused by Trypanosoma cruzi, which is transmitted by triatomine vectors. The northeastern region of Brazil is endemic for Chagas disease and has the largest diversity of triatomine species. T. cruzi development in its triatomine vector depends on diverse factors, including the composition of bacterial gut microbiota.MethodsWe characterized the triatomines captured in the municipality of Russas (Ceará) by sequencing the cytochrome c oxidase subunit I (COI) gene. The composition of the bacterial community in the gut of peridomestic Triatoma brasiliensis and Triatoma pseudomaculata was investigated using culture independent methods based on the amplification of the 16S rRNA gene by polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), DNA fragment cloning, Sanger sequencing and 454 pyrosequencing. Additionally, we identified TcI and TcII types of T. cruzi by sequencing amplicons from the gut metagenomic DNA with primers for the mini-exon gene.ResultsTriatomines collected in the peridomestic ecotopes were diagnosed as T. pseudomaculata and T. brasiliensis by comparing their COI sequence with GenBank. The rate of infection by T. cruzi in adult triatomines reached 80% for T. pseudomaculata and 90% for T. brasiliensis. According to the DNA sequences from the DGGE bands, the triatomine gut microbiota was primarily composed of Proteobacteria and Actinobacteria. However, Firmicutes and Bacteroidetes were also detected, although in much lower proportions. Serratia was the main genus, as it was encountered in all samples analyzed by DGGE and 454 pyrosequencing. Members of Corynebacterinae, a suborder of the Actinomycetales, formed the next most important group. The cloning and sequencing of full-length 16S rRNA genes confirmed the presence of Serratia marcescens, Dietzia sp., Gordonia terrae, Corynebacterium stationis and Corynebacterium glutamicum.ConclusionsThe study of the bacterial microbiota in the triatomine gut has gained increased attention because of the possible role it may play in the epidemiology of Chagas disease by competing with T. cruzi. Culture independent methods have shown that the bacterial composition of the microbiota in the guts of peridomestic triatomines is made up by only few bacterial species.
Parasites & Vectors | 2009
Eloi S. Garcia; Daniele P. Castro; Marcela B Figueiredo; Fernando A. Genta; Patrícia Azambuja
Insects are exposed to a wide range of microorganisms (bacteria, fungi, parasites and viruses) and have interconnected powerful immune reactions. Although insects lack an acquired immune system they have well-developed innate immune defences that allow a general and rapid response to infectious agents.Over the last few decades we have observed a dramatic increase in the knowledge of insect innate immunity, which relies on both humoral and cellular responses. However, innate reactions to natural insect pathogens and insect-transmitted pathogens, such as parasites, still remain poorly understood.In this review, we briefly introduce the general immune system of insects and highlight our current knowledge of these reactions focusing on the interactions of Trypanosoma rangeli with Rhodnius prolixus, an important model for innate immunity investigation.
Memorias Do Instituto Oswaldo Cruz | 2010
Eloi S. Garcia; Daniele P. Castro; Marcela B Figueiredo; Patrícia Azambuja
Bacteria, fungi and parasites are in constant contact with the insect gut environment and can influence different aspects of the host gut physiology. Usually, some of these microorganisms develop and survive in the digestive tract. Therefore, the gut environment must be able to tolerate certain populations of these organisms for the establishment of interactions between non-pathogenic bacteria, parasites and the gut. This review provides a brief overview of the biological and molecular mechanisms that microorganisms use to interact with the gut epithelia in mosquitoes and speculates on their significances for the development of bacteria and Trypanosoma cruzi in the guts of triatomines.
Journal of Insect Physiology | 2008
Daniele P. Castro; Marcela B Figueiredo; Ivone M. Ribeiro; Therezinha Coelho Barbosa Tomassini; Patrícia Azambuja; Eloi S. Garcia
A comparative study of the effects of physalins, seco-steroidal substances of Physalis angulata (Solanaceae), on the immune reactions of R. prolixus was carried out. Ecdysis and mortality were not affected by treatment with physalins B, D, F or G (1-10 microg/ml of blood meal). R. prolixus larvae fed with blood containing physalins and inoculated with 1 microl of Enterobacter cloacae beta12 (5 x 10(3)/insect) exhibited mortality rates three times higher than controls. The insects treated with physalin B, and F (1 microg/ml) and inoculated with E. cloacae beta12 showed significant differences on lysozyme activity in the hemolymph compared to untreated insects. Furthermore, physalin D (1 microg/ml) significantly reduced the antibacterial activity. Concerning cellular immune reactions, all insects treated with physalins (1 microg/ml), exhibited drastic reductions in the quantity of yeast cell-hemocyte binding and subsequent internalization. Insects inoculated with bacteria and treated with physalins B, F and G showed reductions of microaggregate formation but physalin D did not. Physalins B and F also reduced total hemocyte count in the hemolymph. These results suggest that, in different ways, probably due to their different chemical structures, physalin B, D, F and G are immunomodulatory substances for the bloodsucking insect, R. prolixus.
Experimental Parasitology | 2008
Caroline S. Moraes; Sergio Henrique Seabra; Daniele P. Castro; Reginaldo Peçanha Brazil; Wanderley de Souza; Eloi S. Garcia; Patrícia Azambuja
Studies on the lysis of L. chagasi caused by the bacteria Serratia marcescens were carried out. In vitro experiments demonstrated that S. marcescens variant SM 365, a prodigiosin pigment producer, lysed this species of Leishmania but variant DB11, a nonpigmented bacteria, was unable to lyse the parasite. High concentrations of d-mannose were found to protect L. chagasi markedly diminishing the lysis by S. marcescens SM 365. Promastigotes of L. chagasi bound the lectin Concanavalin A conjugated with FITC, the fluorescence was intensely found at the base of the flagellum (flagellar pocket). Scanning electron microscopy revealed that the bacteria adherence occurred mainly in the flagellar pocket. S. marcescens SM 365 formed filamentous structures, identified as biofilms, which connect the protozoan to the developing bacterial clusters, in low concentrations of bacteria after 30 min incubation time. We suggest that bacterial mannose-sensitive (MS) fimbriae are relevant to S. marcescens SM 365 in the lysis of L. chagasi.
Parasites & Vectors | 2015
Cecilia Stahl Vieira; Débora P Mattos; Peter J. Waniek; Jayme Magalhães Santangelo; Marcela B Figueiredo; Marcia Gumiel; Fabio Faria da Mota; Daniele P. Castro; Eloi S. Garcia; Patrícia Azambuja
BackgroundTrypanosoma rangeli is a protozoan that infects a variety of mammalian hosts, including humans. Its main insect vector is Rhodnius prolixus and is found in several Latin American countries. The R. prolixus vector competence depends on the T. rangeli strain and the molecular interactions, as well as the insect’s immune responses in the gut and haemocoel. This work focuses on the modulation of the humoral immune responses of the midgut of R. prolixus infected with T. rangeli Macias strain, considering the influence of the parasite on the intestinal microbiota.MethodsThe population density of T. rangeli Macias strain was analysed in different R. prolixus midgut compartments in long and short-term experiments. Cultivable and non-cultivable midgut bacteria were investigated by colony forming unit (CFU) assays and by 454 pyrosequencing of the 16S rRNA gene, respectively. The modulation of R. prolixus immune responses was studied by analysis of the antimicrobial activity in vitro against different bacteria using turbidimetric tests, the abundance of mRNAs encoding antimicrobial peptides (AMPs) defensin (DefA, DefB, DefC), prolixicin (Prol) and lysozymes (LysA, LysB) by RT-PCR and analysis of the phenoloxidase (PO) activity.ResultsOur results showed that T. rangeli successfully colonized R. prolixus midgut altering the microbiota population and the immune responses as follows: 1 - reduced cultivable midgut bacteria; 2 - decreased the number of sequences of the Enterococcaceae but increased those of the Burkholderiaceae family; the families Nocardiaceae, Enterobacteriaceae and Mycobacteriaceae encountered in control and infected insects remained the same; 3 - enhanced midgut antibacterial activities against Serratia marcescens and Staphylococcus aureus; 4 - down-regulated LysB and Prol mRNA levels; altered DefB, DefC and LysA depending on the infection (short and long-term); 5 - decreased PO activity.ConclusionOur findings suggest that T. rangeli Macias strain modulates R. prolixus immune system and modifies the natural microbiota composition.
Parasites & Vectors | 2016
Cecilia Stahl Vieira; Peter J. Waniek; Daniele P. Castro; Dp Mattos; Otacilio C. Moreira; Patrícia Azambuja
BackgroundRhodnius prolixus is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In natural habitats, these insects are in contact with a variety of bacteria, fungi, virus and parasites that they acquire from both their environments and the blood of their hosts. Microorganism ingestion may trigger the synthesis of humoral immune factors, including antimicrobial peptides (AMPs). The objective of this study was to compare the expression levels of AMPs (defensins and prolixicin) in the different midgut compartments and the fat body of R. prolixus infected with different T. cruzi strains. The T. cruzi Dm 28c clone (TcI) successfully develops whereas Y strain (TcII) does not complete its life- cycle in R. prolixus. The relative AMP gene expressions were evaluated in the insect midgut and fat body infected on different days with the T. cruzi Dm 28c clone and the Y strain. The influence of the antibacterial activity on the intestinal microbiota was taken into account.MethodsThe presence of T. cruzi in the midgut of R. prolixus was analysed by optical microscope. The relative expression of the antimicrobial peptides encoding genes defensin (defA, defB, defC) and prolixicin (prol) was quantified by RT-qPCR. The antimicrobial activity of the AMPs against Staphylococcus aureus, Escherichia coli and Serratia marcescens were evaluated in vitro using turbidimetric tests with haemolymph, anterior and posterior midgut samples. Midgut bacteria were quantified using colony forming unit (CFU) assays and real time quantitative polymerase chain reaction (RT-qPCR).ResultsOur results showed that the infection of R. prolixus by the two different T. cruzi strains exhibited different temporal AMP induction profiles in the anterior and posterior midgut. Insects infected with T. cruzi Dm 28c exhibited an increase in defC and prol transcripts and a simultaneous reduction in the midgut cultivable bacteria population, Serratia marcescens and Rhodococcus rhodnii. In contrast, the T. cruzi Y strain neither induced AMP gene expression in the gut nor reduced the number of colony formation units in the anterior midgut. Beside the induction of a local immune response in the midgut after feeding R. prolixus with T. cruzi, a simultaneous systemic response was also detected in the fat body.ConclusionsR. prolixus AMP gene expressions and the cultivable midgut bacterial microbiota were modulated in distinct patterns, which depend on the T. cruzi genotype used for infection.
Parasites & Vectors | 2012
E.S. Garcia; Daniele P. Castro; Marcela B Figueiredo; Patrícia Azambuja
Trypanosoma rangeli is a protozoan that is non-pathogenic for humans and other mammals but causes pathology in the genus Rhodnius. T. rangeli and R. prolixus is an excellent model for studying the parasite-vector interaction, but its cycle in invertebrates remains unclear. The vector becomes infected on ingesting blood containing parasites, which subsequently develop in the gut, hemolymph and salivary glands producing short and large epimastigotes and metacyclic trypomastigotes, which are the infective forms. The importance of the T. rangeli cycle is the flagellate penetration into the gut cells and invasion of the salivary glands. The establishment of the parasite depends on the alteration of some vector defense mechanisms. Herein, we present our understanding of T. rangeli infection on the vector physiology, including gut and salivary gland invasions, hemolymph reactions and behavior alteration.
Parasites & Vectors | 2012
Cristina Henriques; Daniele P. Castro; Leonardo Gomes; Eloi S. Garcia; Wanderley de Souza
BackgroundUsually the analysis of the various developmental stages of Trypanosoma cruzi in the experimentally infected vertebrate and invertebrate hosts is based on the morphological observations of tissue fragments from animals and insects. The development of techniques that allow the imaging of animals infected with parasites expressing luciferase open up possibilities to follow the fate of bioluminescent parasites in infected vectors.MethodsD-luciferin (60 μg) was injected into the hemocoel of the whole insect before bioluminescence acquisition. In dissected insects, the whole gut was incubated with D-luciferin in PBS (300 μg/ml) for ex vivo bioluminescence acquisition in the IVIS® Imaging System, Xenogen.ResultsHerein, we describe the results obtained with the luciferase gene integrated into the genome of the Dm28c clone of T. cruzi, and the use of these parasites to follow, in real time, the infection of the insect vector Rhodnius prolixus, by a non- invasive method. The insects were evaluated by in vivo bioluminescent imaging on the feeding day, and on the 7 th, 14 th, 21 st and 28 th days after feeding. To corroborate the bioluminescent imaging made in vivo, and investigate the digestive tract region, the insects were dissected. The bioluminescence emitted was proportional to the number of protozoans in regions of the gut. The same digestive tracts were also macerated to count the parasites in distinct morphological stages with an optical microscope, and for bioluminescence acquisition in a microplate using the IVIS® Imaging System. A positive correlation of parasite numbers and bioluminescence in the microplate was obtained.ConclusionsThis is the first report of bioluminescent imaging in Rhodnius prolixus infected with trypomastigotes of the Dm28c-luc stable strain, expressing firefly luciferase. In spite of the distribution limitations of the substrate (D-luciferin) in the insect body, longitudinal evaluation of infected insects by bioluminescent imaging is a valuable tool. Bioluminescent imaging of the digestive tract infected with Dm28c-luc is highly sensitive and accurate method to track the fate of the parasite in the vector, in the crop, intestine and rectum. This methodology is useful to gain a better understanding of the parasite – insect vector interactions.
Experimental Parasitology | 2009
Caroline S. Moraes; Sergio Henrique Seabra; J.M. Albuquerque-Cunha; Daniele P. Castro; Fernando A. Genta; Wanderley de Souza; Reginaldo Peçanha Brazil; Eloi S. Garcia; Patrícia Azambuja
In this paper, the lytic activity of two variants of Serratia marcescens against promastigotes of Leishmania braziliensis was studied. In vitro assays showed that S. marcescens variant SM365 lyses L. braziliensis promastigotes, while the variant DB11 did not. Scanning electron microscopy (SEM) revealed that S. marcescens SM365 adheres to all cellular body and flagellum of the parasite. Several filamentous structures were formed and identified as biofilms. After 120min incubation, they connect the protozoan to the developing bacterial clusters. SEM also demonstrated that bacteria, adhered onto L. braziliensis promastigote surface, formed small filamentous structures which apparently penetrates into the parasite membrane. d-mannose protects L. braziliensis against the S. marcescens SM365 lytic effect in a dose dependent manner. SM365 variant pre cultivated at 37 degrees C did not synthesize prodigiosin although the adherence and lysis of L. braziliensis were similar to the effect observed with bacteria cultivated at 28 degrees C, which produce high concentrations of prodigiosin. Thus, we suggest that prodigiosin is not involved in the lysis of promastigotes and that adherence promoted by bacterial mannose-sensitive (MS) fimbriae is a determinant factor in the lysis of L. braziliensis by S. marcescens SM365.
Collaboration
Dive into the Daniele P. Castro's collaboration.
National Council for Scientific and Technological Development
View shared research outputs