Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcela B Figueiredo is active.

Publication


Featured researches published by Marcela B Figueiredo.


Parasites & Vectors | 2009

Trypanosoma rangeli: a new perspective for studying the modulation of immune reactions of Rhodnius prolixus

Eloi S. Garcia; Daniele P. Castro; Marcela B Figueiredo; Fernando A. Genta; Patrícia Azambuja

Insects are exposed to a wide range of microorganisms (bacteria, fungi, parasites and viruses) and have interconnected powerful immune reactions. Although insects lack an acquired immune system they have well-developed innate immune defences that allow a general and rapid response to infectious agents.Over the last few decades we have observed a dramatic increase in the knowledge of insect innate immunity, which relies on both humoral and cellular responses. However, innate reactions to natural insect pathogens and insect-transmitted pathogens, such as parasites, still remain poorly understood.In this review, we briefly introduce the general immune system of insects and highlight our current knowledge of these reactions focusing on the interactions of Trypanosoma rangeli with Rhodnius prolixus, an important model for innate immunity investigation.


Journal of Insect Physiology | 2008

Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities

Marcela B Figueiredo; Fernando A. Genta; Eloi S. Garcia; Patrícia Azambuja

In this work we investigated the effects of Trypanosoma rangeli infection through a blood meal on the hemocyte phagocytosis in experiments using the 5th instar larvae of Rhodnius prolixus. Hemocyte phagocytic activity was strongly blocked by oral infection with the parasites. In contrast, hemocyte phagocytosis inhibition caused by T. rangeli infection was rescued by exogenous arachidonic acid (20 microg/insect) or platelet activating factor (PAF; 1 microg/insect) applied by hemocelic injection. Following the oral infection with the protozoan we observed significant attenuation of phospholipase A2 (PLA2) activities in R. prolixus hemocytes (cytosolic PLA2: cPLA2, secreted PLA2: sPLA2 and Ca+2-independent PLA2: iPLA2) and enhancement of sPLA2 activities in cell-free hemolymph. At the same time, the PAF-acetyl hydrolase (PAF-AH) activity in the cell-free hemolymph increased considerably. Our results suggest that T. rangeli infection depresses eicosanoid and insect PAF analogous (iPAF) pathways giving support to the role of PLA2 in the regulation of arachidonic acid and iPAF biosynthesis and of PAF-AH by reducing the concentration of iPAF in R. prolixus. This illustrates the ability of T. rangeli to modulate the immune responses of R. prolixus to favor its own multiplication in the hemolymph.


Memorias Do Instituto Oswaldo Cruz | 2010

Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae): a review

Eloi S. Garcia; Daniele P. Castro; Marcela B Figueiredo; Patrícia Azambuja

Bacteria, fungi and parasites are in constant contact with the insect gut environment and can influence different aspects of the host gut physiology. Usually, some of these microorganisms develop and survive in the digestive tract. Therefore, the gut environment must be able to tolerate certain populations of these organisms for the establishment of interactions between non-pathogenic bacteria, parasites and the gut. This review provides a brief overview of the biological and molecular mechanisms that microorganisms use to interact with the gut epithelia in mosquitoes and speculates on their significances for the development of bacteria and Trypanosoma cruzi in the guts of triatomines.


Journal of Insect Physiology | 2008

Immune depression in Rhodnius prolixus by seco-steroids, physalins

Daniele P. Castro; Marcela B Figueiredo; Ivone M. Ribeiro; Therezinha Coelho Barbosa Tomassini; Patrícia Azambuja; Eloi S. Garcia

A comparative study of the effects of physalins, seco-steroidal substances of Physalis angulata (Solanaceae), on the immune reactions of R. prolixus was carried out. Ecdysis and mortality were not affected by treatment with physalins B, D, F or G (1-10 microg/ml of blood meal). R. prolixus larvae fed with blood containing physalins and inoculated with 1 microl of Enterobacter cloacae beta12 (5 x 10(3)/insect) exhibited mortality rates three times higher than controls. The insects treated with physalin B, and F (1 microg/ml) and inoculated with E. cloacae beta12 showed significant differences on lysozyme activity in the hemolymph compared to untreated insects. Furthermore, physalin D (1 microg/ml) significantly reduced the antibacterial activity. Concerning cellular immune reactions, all insects treated with physalins (1 microg/ml), exhibited drastic reductions in the quantity of yeast cell-hemocyte binding and subsequent internalization. Insects inoculated with bacteria and treated with physalins B, F and G showed reductions of microaggregate formation but physalin D did not. Physalins B and F also reduced total hemocyte count in the hemolymph. These results suggest that, in different ways, probably due to their different chemical structures, physalin B, D, F and G are immunomodulatory substances for the bloodsucking insect, R. prolixus.


Parasites & Vectors | 2015

Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population

Cecilia Stahl Vieira; Débora P Mattos; Peter J. Waniek; Jayme Magalhães Santangelo; Marcela B Figueiredo; Marcia Gumiel; Fabio Faria da Mota; Daniele P. Castro; Eloi S. Garcia; Patrícia Azambuja

BackgroundTrypanosoma rangeli is a protozoan that infects a variety of mammalian hosts, including humans. Its main insect vector is Rhodnius prolixus and is found in several Latin American countries. The R. prolixus vector competence depends on the T. rangeli strain and the molecular interactions, as well as the insect’s immune responses in the gut and haemocoel. This work focuses on the modulation of the humoral immune responses of the midgut of R. prolixus infected with T. rangeli Macias strain, considering the influence of the parasite on the intestinal microbiota.MethodsThe population density of T. rangeli Macias strain was analysed in different R. prolixus midgut compartments in long and short-term experiments. Cultivable and non-cultivable midgut bacteria were investigated by colony forming unit (CFU) assays and by 454 pyrosequencing of the 16S rRNA gene, respectively. The modulation of R. prolixus immune responses was studied by analysis of the antimicrobial activity in vitro against different bacteria using turbidimetric tests, the abundance of mRNAs encoding antimicrobial peptides (AMPs) defensin (DefA, DefB, DefC), prolixicin (Prol) and lysozymes (LysA, LysB) by RT-PCR and analysis of the phenoloxidase (PO) activity.ResultsOur results showed that T. rangeli successfully colonized R. prolixus midgut altering the microbiota population and the immune responses as follows: 1 - reduced cultivable midgut bacteria; 2 - decreased the number of sequences of the Enterococcaceae but increased those of the Burkholderiaceae family; the families Nocardiaceae, Enterobacteriaceae and Mycobacteriaceae encountered in control and infected insects remained the same; 3 - enhanced midgut antibacterial activities against Serratia marcescens and Staphylococcus aureus; 4 - down-regulated LysB and Prol mRNA levels; altered DefB, DefC and LysA depending on the infection (short and long-term); 5 - decreased PO activity.ConclusionOur findings suggest that T. rangeli Macias strain modulates R. prolixus immune system and modifies the natural microbiota composition.


Parasites & Vectors | 2012

Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies

E.S. Garcia; Daniele P. Castro; Marcela B Figueiredo; Patrícia Azambuja

Trypanosoma rangeli is a protozoan that is non-pathogenic for humans and other mammals but causes pathology in the genus Rhodnius. T. rangeli and R. prolixus is an excellent model for studying the parasite-vector interaction, but its cycle in invertebrates remains unclear. The vector becomes infected on ingesting blood containing parasites, which subsequently develop in the gut, hemolymph and salivary glands producing short and large epimastigotes and metacyclic trypomastigotes, which are the infective forms. The importance of the T. rangeli cycle is the flagellate penetration into the gut cells and invasion of the salivary glands. The establishment of the parasite depends on the alteration of some vector defense mechanisms. Herein, we present our understanding of T. rangeli infection on the vector physiology, including gut and salivary gland invasions, hemolymph reactions and behavior alteration.


Journal of Insect Physiology | 2009

Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.

Daniele P. Castro; Marcela B Figueiredo; F.A. Genta; Ivone M. Ribeiro; Therezinha Coelho Barbosa Tomassini; Patrícia Azambuja; E.S. Garcia

The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.


Memorias Do Instituto Oswaldo Cruz | 2016

Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas’ disease vector Rhodnius prolixus

Marcela B Figueiredo; Geovany Amorim Gomes; Jayme Magalhães Santangelo; Emerson G. Pontes; Patrícia Azambuja; Eloi S. Garcia; Mário Geraldo de Carvalho

The aim of this study was to identify the composition of the essential oil from leaves of Lippia sidoides (EOLS), a typical shrub commonly found in the dry northeast of Brazil, popularly known as “alecrim-pimenta”. Additionally, we investigated the nymphicidal, ovicidal, phagoinhibitory and excretion effects of EOLS, its major constituent thymol and its isomer carvacrol, on fourth instar nymphs and eggs of Rhodnius prolixus, the Chagas’ disease vector. The nymphicidal and ovicidal activity of thymol, carvacrol, and EOLS was assessed by tests using impregnated Petri dishes. The lethal concentration values (LC50) for EOLS, carvacrol, and thymol were 54.48, 32.98, and 9.38 mg/cm2, respectively. The ovicidal test showed that both carvacrol and thymol (50 mg/cm2) inhibited hatching (50% and 23.3%, respectively), while treatments with 10 mg/cm2 or 50 mg/cm2 EOLS did not affect the hatching rate at all (80% and 90%, respectively). We observed an anti-feeding effect in insects fed with blood containing natural products at the higher concentrations (100 µg/mL). Finally, excretion rate was affected by EOLS and carvacrol, but not by thymol. These findings offer novel insights into basic physiological processes that make the tested natural compounds interesting candidates for new types of insecticides.


Journal of Insect Physiology | 2017

Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli

Patrícia Azambuja; Eloi S. Garcia; Peter J. Waniek; Cecilia Stahl Vieira; Marcela B Figueiredo; Marcelo S. Gonzalez; C.B. Mello; Daniele P. Castro; Norman A. Ratcliffe

This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VWs research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.


Journal of Insect Physiology | 2006

Cellular immune response in Rhodnius prolixus: Role of ecdysone in hemocyte phagocytosis

Marcela B Figueiredo; Daniele P. Castro; Nadir F.S. Nogueira; Eloi S. Garcia; Patrícia Azambuja

Collaboration


Dive into the Marcela B Figueiredo's collaboration.

Top Co-Authors

Avatar

Patrícia Azambuja

National Council for Scientific and Technological Development

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.S. Garcia

National Council for Scientific and Technological Development

View shared research outputs
Top Co-Authors

Avatar

Marcelo S. Gonzalez

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.B. Mello

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge