Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Schiavazzi is active.

Publication


Featured researches published by Daniele Schiavazzi.


International Journal for Numerical Methods in Biomedical Engineering | 2016

Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation.

Daniele Schiavazzi; G. Arbia; Catriona Baker; Anthony M. Hlavacek; Tain-Yen Hsia; Alison L. Marsden; Irene E. Vignon-Clementel

The adoption of simulation tools to predict surgical outcomes is increasingly leading to questions about the variability of these predictions in the presence of uncertainty associated with the input clinical data. In the present study, we propose a methodology for full propagation of uncertainty from clinical data to model results that, unlike deterministic simulation, enables estimation of the confidence associated with model predictions. We illustrate this problem in a virtual stage II single ventricle palliation surgery example. First, probability density functions (PDFs) of right pulmonary artery (PA) flow split ratio and average pulmonary pressure are determined from clinical measurements, complemented by literature data. Starting from a zero-dimensional semi-empirical approximation, Bayesian parameter estimation is used to find the distributions of boundary conditions that produce the expected PA flow split and average pressure PDFs as pre-operative model results. To reduce computational cost, this inverse problem is solved using a Kriging approximant. Second, uncertainties in the boundary conditions are propagated to simulation predictions. Sparse grid stochastic collocation is employed to statistically characterize model predictions of post-operative hemodynamics in models with and without PA stenosis. The results quantify the statistical variability in virtual surgery predictions, allowing for placement of confidence intervals on simulation outputs.


The Journal of Thoracic and Cardiovascular Surgery | 2015

Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study.

Daniele Schiavazzi; Ethan Kung; Alison L. Marsden; Catriona Baker; Giancarlo Pennati; Tain Yen Hsia; Anthony M. Hlavacek; Adam L. Dorfman

OBJECTIVE Currently, no quantitative guidelines have been established for treatment of left pulmonary artery (LPA) stenosis. This study aims to quantify the effects of LPA stenosis on postoperative hemodynamics for single-ventricle patients undergoing stage II superior cavopulmonary connection (SCPC) surgery, using a multiscale computational approach. METHODS Image data from 6 patients were segmented to produce 3-dimensional models of the pulmonary arteries before stage II surgery. Pressure and flow measurements were used to tune a 0-dimensional model of the entire circulation. Postoperative geometries were generated through stage II virtual surgery; varying degrees of LPA stenosis were applied using mesh morphing and hemodynamics assessed through coupled 0-3-dimensional simulations. To relate metrics of stenosis to clinical classifications, pediatric cardiologists and surgeons ranked the degrees of stenosis in the models. The effects of LPA stenosis were assessed based on left-to-right pulmonary artery flow split ratios, mean pressure drop across the stenosis, cardiac pressure-volume loops, and other clinically relevant parameters. RESULTS Stenosis of >65% of the vessel diameter was required to produce a right pulmonary artery:LPA flow split <30%, and/or a mean pressure drop of >3.0 mm Hg, defined as clinically significant changes. CONCLUSIONS The effects of <65% stenosis on SCPC hemodynamics and physiology were minor and may not justify the increased complexity of adding LPA arterioplasty to the SCPC operation. However, in the longer term, pulmonary augmentation may affect outcomes of the Fontan completion surgery, as pulmonary artery distortion is a risk factor that may influence stage III physiology.


Journal of Computational Physics | 2014

A matching pursuit approach to solenoidal filtering of three-dimensional velocity measurements

Daniele Schiavazzi; Filippo Coletti; Gianluca Iaccarino; John K. Eaton

Methodologies to acquire three-dimensional velocity fields are becoming increasingly available, generating large datasets of steady state and transient flows of engineering and/or biomedical interest. This paper presents a novel linear filter for three-dimensional velocity acquisitions, which eliminates the spurious velocity divergence due to measurement errors. The noise reduction properties of the associated linear operator are discussed together with the treatment of boundary conditions and efficient handling of large measurement datasets. Examples show the application of the technique to real velocity fields acquired through Magnetic Resonance Velocimetry as well as Particle Image Velocimetry. The effectiveness of the filter is demonstrated by application to synthetic velocity fields obtained from analytical solutions and computations. The filter eliminates about half of the noise, without artificial smoothing of the original data, and conserves localized flow features.


Computers & Fluids | 2017

Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations

Justin Tran; Daniele Schiavazzi; Abhay B. Ramachandra; Andrew M. Kahn; Alison L. Marsden

Atherosclerotic coronary artery disease, which can result in coronary artery stenosis, acute coronary artery occlusion, and eventually myocardial infarction, is a major cause of morbidity and mortality worldwide. Non-invasive characterization of coronary blood flow is important to improve understanding, prevention, and treatment of this disease. Computational simulations can now produce clinically relevant hemodynamic quantities using only non-invasive measurements, combining detailed three dimensional fluid mechanics with physiological models in a multiscale framework. These models, however, require specification of numerous input parameters and are typically tuned manually without accounting for uncertainty in the clinical data, hindering their application to large clinical studies. We propose an automatic, Bayesian, approach to parameter estimation based on adaptive Markov chain Monte Carlo sampling that assimilates non-invasive quantities commonly acquired in routine clinical care, quantifies the uncertainty in the estimated parameters and computes the confidence in local predicted hemodynamic indicators.


International Journal for Numerical Methods in Biomedical Engineering | 2017

Patient‐specific parameter estimation in single‐ventricle lumped circulation models under uncertainty

Daniele Schiavazzi; Alessia Baretta; Giancarlo Pennati; Tain-Yen Hsia; Alison L. Marsden

Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright


Physics of Fluids | 2014

Fluid flow and scalar transport through porous fins

Filippo Coletti; Kenshiro Muramatsu; Daniele Schiavazzi; Christopher J. Elkins; John K. Eaton

Lotus-type porous metals are a promising alternative for compact heat transfer applications. In lotus-type porous fins, jet impingement and transverse mixing play important roles for heat transfer: jets emerging from the pores impinge on the following fin and enhance heat transfer performance, while the transverse fluid motion advects heat away from the fin surface. By means of magnetic resonance imaging we have performed mean flow and scalar transport measurements through scaled-up replicas of two kinds of lotus-type porous fins: one with a deterministic hole pattern and staggered alignment, and one with a random hole pattern, but the same porosity and mean pore diameter. The choice of geometric parameters (fin spacing, thickness, porosity, and hole diameter) is based on previous thermal studies. The Reynolds number based on the mean pore diameter and inner velocity ranges from 80 to 3800. The measurements show that in the random hole pattern the jet characteristic length scale is substantially larger with respect to the staggered hole pattern. The random geometry also produces long coherent vortices aligned with the streamwise direction, which improves the transverse mixing. The random hole distribution causes the time mean streamlines to meander in a random-walk manner, and the diffusivity coefficient associated to the mechanical dispersion (which is nominally zero in the staggered hole configuration) is several times larger than the fluid molecular diffusivity at the higher Reynolds numbers. From the trends in maximum streamwise velocity, streamwise vorticity, and mechanical diffusivity, it is inferred that the flow undergoes a transition to an unsteady/turbulent regime around Reynolds number 300. This is supported by the measurements of concentration of an isokinetic non-buoyant plume of scalar injected upstream of the stack of fins. The total scalar diffusivity for the fully turbulent regime is found to be 22 times larger than the molecular diffusivity, but only 6 times higher than the mechanical diffusivity, indicating that the latter plays a significant role for heat transfer and mixing.


Computer Methods in Applied Mechanics and Engineering | 2017

A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling

Daniele Schiavazzi; Alireza Doostan; Gianluca Iaccarino; Alison L. Marsden

Computational models are used in a variety of fields to improve our understanding of complex physical phenomena. Recently, the realism of model predictions has been greatly enhanced by transitioning from deterministic to stochastic frameworks, where the effects of the intrinsic variability in parameters, loads, constitutive properties, model geometry and other quantities can be more naturally included. A general stochastic system may be characterized by a large number of arbitrarily distributed and correlated random inputs, and a limited support response with sharp gradients or event discontinuities. This motivates continued research into novel adaptive algorithms for uncertainty propagation, particularly those handling high dimensional, arbitrarily distributed random inputs and non-smooth stochastic responses. In this work, we generalize a previously proposed multi-resolution approach to uncertainty propagation to develop a method that improves computational efficiency, can handle arbitrarily distributed random inputs and non-smooth stochastic responses, and naturally facilitates adaptivity, i.e., the expansion coefficients encode information on solution refinement. Our approach relies on partitioning the stochastic space into elements that are subdivided along a single dimension, or, in other words, progressive refinements exhibiting a binary tree representation. We also show how these binary refinements are particularly effective in avoiding the exponential increase in the multi-resolution basis cardinality and significantly reduce the regression complexity for moderate to high dimensional random inputs. The performance of the approach is demonstrated through previously proposed uncertainty propagation benchmarks and stochastic multi-scale finite element simulations in cardiovascular flow.


PLOS ONE | 2018

Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI

Omid Amili; Daniele Schiavazzi; Sean Moen; Bharathi D. Jagadeesan; Pierre-Francois Van de Moortele; Filippo Coletti

Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities.


Journal of Biomechanics | 2016

On a sparse pressure-flow rate condensation of rigid circulation models

Daniele Schiavazzi; Tain-Yen Hsia; Alison L. Marsden

Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol׳ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions.


Experiments in Fluids | 2015

Three-dimensional inspiratory flow in the upper and central human airways

Andrew Banko; Filippo Coletti; Daniele Schiavazzi; Christopher J. Elkins; John K. Eaton

Collaboration


Dive into the Daniele Schiavazzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Kahn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tain-Yen Hsia

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge