Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filippo Coletti is active.

Publication


Featured researches published by Filippo Coletti.


Physics of Fluids | 2014

Radiation induces turbulence in particle-laden fluids

Rémi Zamansky; Filippo Coletti; Marc Massot; Ali Mani

When a transparent fluid laden with solid particles is subject to radiative heating, non-uniformities in particle distribution result in local fluid temperature fluctuations. Under the influence of gravity, buoyancy induces vortical fluid motion which can lead to strong preferential concentration, enhancing the local heating and more non-uniformities in particle distribution. By employing direct numerical simulations this study shows that the described feedback loop can create and sustain turbulence. The velocity and length scale of the resulting turbulence is not known a priori, and is set by balance between viscous forces and buoyancy effects. When the particle response time is comparable to a viscous time scale, introduced in our analysis, the system exhibits intense fluctuations of turbulent kinetic energy and strong preferential concentration of particles.


Journal of Computational Physics | 2014

A matching pursuit approach to solenoidal filtering of three-dimensional velocity measurements

Daniele Schiavazzi; Filippo Coletti; Gianluca Iaccarino; John K. Eaton

Methodologies to acquire three-dimensional velocity fields are becoming increasingly available, generating large datasets of steady state and transient flows of engineering and/or biomedical interest. This paper presents a novel linear filter for three-dimensional velocity acquisitions, which eliminates the spurious velocity divergence due to measurement errors. The noise reduction properties of the associated linear operator are discussed together with the treatment of boundary conditions and efficient handling of large measurement datasets. Examples show the application of the technique to real velocity fields acquired through Magnetic Resonance Velocimetry as well as Particle Image Velocimetry. The effectiveness of the filter is demonstrated by application to synthetic velocity fields obtained from analytical solutions and computations. The filter eliminates about half of the noise, without artificial smoothing of the original data, and conserves localized flow features.


Journal of Turbomachinery-transactions of The Asme | 2010

Aerothermal investigation of a rib-roughened trailing edge channel with crossing-jets-part I: Flow field analysis

Alessandro Armellini; Filippo Coletti; Tony Arts; Christophe Scholtes

The present contribution addresses the aero-thermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional Particle Image Velocimetry measurements are performed in several planes around mid-span of the channel and recombined to visualize and quantify three-dimensional flow features. The jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume, RANS solver CEDRE.Copyright


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2014

Three-Dimensional Mass Fraction Distribution of a Spray Measured by X-Ray Computed Tomography

Filippo Coletti; Michael Benson; Alexander L. Sagues; Benjamin H. Miller; Rebecca Fahrig; John K. Eaton

In order to design a spraying system with the desired characteristics, the atomization process has to be understood in detail, including the primary break-up of the liquid core. Accurate prediction of primary break-up is a major barrier to computer-based analysis of spray combustion. The development of models is hindered by the lack of validation data in a region where the fluid is dense, and optical access is therefore limited.The present experimental study is aimed at probing the spray structure by means of X-ray computed tomography (CT). A full-cone atomizer (0.79 mm orifice diameter) spraying in air at ambient pressure is investigated as a proof of concept. A mixture of water and iodine is used as the working fluid, providing elevated X-ray absorption and therefore improved signal-to-noise ratio. Several hundreds of X-ray projections are acquired as the spraying atomizer is rotated in front of the detector. Standard software for medical imaging is used to reconstruct the three-dimensional time-averaged distribution of liquid mass fraction in the full field of view, from the intact liquid core to the dilute spray region. A spatial resolution of 0.6 mm is obtained along the spraying direction, while the resolution is 0.3 mm in the other two directions. Significant asymmetries in the structure of the spray are revealed.Copyright


Physics of Fluids | 2014

Fluid flow and scalar transport through porous fins

Filippo Coletti; Kenshiro Muramatsu; Daniele Schiavazzi; Christopher J. Elkins; John K. Eaton

Lotus-type porous metals are a promising alternative for compact heat transfer applications. In lotus-type porous fins, jet impingement and transverse mixing play important roles for heat transfer: jets emerging from the pores impinge on the following fin and enhance heat transfer performance, while the transverse fluid motion advects heat away from the fin surface. By means of magnetic resonance imaging we have performed mean flow and scalar transport measurements through scaled-up replicas of two kinds of lotus-type porous fins: one with a deterministic hole pattern and staggered alignment, and one with a random hole pattern, but the same porosity and mean pore diameter. The choice of geometric parameters (fin spacing, thickness, porosity, and hole diameter) is based on previous thermal studies. The Reynolds number based on the mean pore diameter and inner velocity ranges from 80 to 3800. The measurements show that in the random hole pattern the jet characteristic length scale is substantially larger with respect to the staggered hole pattern. The random geometry also produces long coherent vortices aligned with the streamwise direction, which improves the transverse mixing. The random hole distribution causes the time mean streamlines to meander in a random-walk manner, and the diffusivity coefficient associated to the mechanical dispersion (which is nominally zero in the staggered hole configuration) is several times larger than the fluid molecular diffusivity at the higher Reynolds numbers. From the trends in maximum streamwise velocity, streamwise vorticity, and mechanical diffusivity, it is inferred that the flow undergoes a transition to an unsteady/turbulent regime around Reynolds number 300. This is supported by the measurements of concentration of an isokinetic non-buoyant plume of scalar injected upstream of the stack of fins. The total scalar diffusivity for the fully turbulent regime is found to be 22 times larger than the molecular diffusivity, but only 6 times higher than the mechanical diffusivity, indicating that the latter plays a significant role for heat transfer and mixing.


Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2011

Aerodynamic investigation of a rotating rib-roughened channel by time-resolved particle image velocimetry

Filippo Coletti; Tony Arts

Particle image velocimetry (PIV) is used to study the turbulent flow over the rib-roughened wall of a cooling channel model in rotation. The aspect ratio is 0.9, the blockage ratio is 0.1 and the rib pitch-to-height ratio is 10. The flow direction is outward, with a Reynolds number of 1.5 × 104 and a rotation number of 0.3 in both rotational directions. The PIV system rotates with the channel, allowing to directly measure the relative flow velocity with high spatial and temporal resolution. Coriolis forces affect the stability of the shear layers: cyclonic (anticyclonic) rotation inhibits (enhances) the turbulent motion, influencing velocity, vorticity, and turbulence intensity of the flow. The time-resolved measurements show the effect of rotation on the shear layer instability and on the consequent formation of spanwise vortices, as well as on the time trace of the reattachment point. Turbulent energy spectra suggest that all temporal scales are affected by rotation.


ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015 | 2015

Building block experiments in discrete hole film cooling

Kevin J. Ryan; Filippo Coletti; Christopher J. Elkins; John K. Eaton

This paper reports a series of building block experiments for discrete hole film cooling. Seven different configurations, including variations in injection wall curvature, mainstream pressure gradient, and boundary layer thickness are measured for a round film cooling hole, inclined 30 degrees at injection, and operated at a blowing ratio of unity. Full three dimensional, three component velocity fields and scalar coolant concentration fields are acquired using Magnetic Resonance Imaging (MRI) techniques. The results show the effect of varying the mainstream condition on the mean coolant concentration distribution and mean velocity field, including the counter-rotating vortex pair (CVP), a dominant feature of jet in crossflow type flows. The present study focuses on an analysis of the building block configurations only possible with full three dimensional velocity and concentration fields. Several scalar parameters including normalized perimeter, jet trajectory, maximum coolant concentration, and coolant concentration spread are extracted from the collected data and compared across the different configurations. The results indicate that the pressure gradient variations have the strongest effect on the calculated quantities, the boundary layer slightly less, and the curvature very little.© 2015 ASME


ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012 | 2012

Three-Dimensional Velocity Measurements of Film Cooling Flow Under Favorable Pressure Gradient

Filippo Coletti; Christopher J. Elkins; John K. Eaton

This paper addresses the effect of a favorable streamwise pressure gradient on the velocity field of a single-hole film cooling configuration, operating at unity blowing ratio. The hole is circular and inclined at 30 degrees with respect to the main flow direction. Magnetic Resonance Velocimetry is used to obtain the full three-dimensional field for a baseline configuration with negligible streamwise pressure gradient and for a configuration with favorable streamwise pressure gradient. In the latter case the acceleration parameter is K = 4.8·10−6, which is representative of the conditions along the pressure side of a turbine airfoil. The experiments are performed in water. The velocity and vorticity distributions highlight the strong impact of the favorable pressure gradient on the development of the counter-rotating vortex pair which dominates the dynamics of the film cooling flow. The accelerating flow drives the vortex pair towards the wall, while the increased stretching of the vortices augments their circulation. Both effects contribute to bring the counter-rotating vortices closer to each other. They also persist much further in space with respect to the zero-pressure-gradient case. Implications for the film cooling performance are discussed.Copyright


PLOS ONE | 2018

Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI

Omid Amili; Daniele Schiavazzi; Sean Moen; Bharathi D. Jagadeesan; Pierre-Francois Van de Moortele; Filippo Coletti

Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities.


Journal of Applied Physiology | 2018

Morphological and functional properties of the conducting human airways investigated by in vivo computed tomography and in vitro MRI

Tristan Van de Moortele; Christine H. Wendt; Filippo Coletti

The accurate representation of the human airway anatomy is crucial for understanding and modeling the structure-function relationship in both healthy and diseased lungs. The present knowledge in this area is based on morphometric studies of excised lung casts, partially complemented by in vivo studies in which computed tomography (CT) was used on a small number of subjects. In the present study, we analyzed CT scans of a cohort of healthy subjects and obtained comprehensive morphometric information down to the seventh generation of bronchial branching, including airway diameter, length, branching angle, and rotation angle. Although some of the geometric parameters (such as the child-to-parent branch diameter ratio) are found to be in line with accepted values, for others (such as the branch length-to-diameter ratio) our findings challenge the common assumptions. We also evaluated several metrics of self-similarity, including the fractal dimension of the airway tree. Additionally, we used phase-contrast magnetic resonance imaging (MRI) to obtain the volumetric flow field in the three-dimensional-printed airway model of one of the subjects during steady inhalation. This is used to relate structural and functional parameters and, in particular, to close the power-law relationship between branch flow rate and diameter. The diameter exponent is found to be significantly lower than in the usually assumed Poiseuille regime, which we attribute to the strong secondary (i.e., transverse) velocity component. The strength of the secondary velocity with respect to the axial component exceeds the levels found in idealized airway models and persists within the first seven generations. NEW & NOTEWORTHY We performed a comprehensive computed tomography-based study of the conductive airway morphology in normal human subjects, including branch diameter, length, and mutual angles. We found significant departure from classic homothetic relationships. We also carried out MRI measurements of the three-dimensional inspiratory flow in an anatomy-based model and directly assessed structure-function relationships that have so far been assumed. We found that strong secondary flows (i.e., transverse velocity components) persist through the first seven generations of bronchial branching.

Collaboration


Dive into the Filippo Coletti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Arts

Von Karman Institute for Fluid Dynamics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andras Nemes

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge