Daniele V. F. Tauriello
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniele V. F. Tauriello.
Cancer Cell | 2012
Alexandre Calon; Elisa Espinet; Sergio Palomo-Ponce; Daniele V. F. Tauriello; Mar Iglesias; María Virtudes Céspedes; Marta Sevillano; Cristina Nadal; Peter Jung; Xiang H.-F. Zhang; Daniel Byrom; Antoni Riera; David Rossell; Ramon Mangues; Joan Massagué; Elena Sancho; Eduard Batlle
A large proportion of colorectal cancers (CRCs) display mutational inactivation of the TGF-β pathway, yet, paradoxically, they are characterized by elevated TGF-β production. Here, we unveil a prometastatic program induced by TGF-β in the microenvironment that associates with a high risk of CRC relapse upon treatment. The activity of TGF-β on stromal cells increases the efficiency of organ colonization by CRC cells, whereas mice treated with a pharmacological inhibitor of TGFBR1 are resilient to metastasis formation. Secretion of IL11 by TGF-β-stimulated cancer-associated fibroblasts (CAFs) triggers GP130/STAT3 signaling in tumor cells. This crosstalk confers a survival advantage to metastatic cells. The dependency on the TGF-β stromal program for metastasis initiation could be exploited to improve the diagnosis and treatment of CRC.
Nature Genetics | 2015
Alexandre Calon; Enza Lonardo; Antonio Berenguer-Llergo; Elisa Espinet; Xavier Hernando-Momblona; Mar Iglesias; Marta Sevillano; Sergio Palomo-Ponce; Daniele V. F. Tauriello; Daniel Byrom; Carme Cortina; Clara Morral; Carles Barceló; Sébastien Tosi; Antoni Riera; Camille Stephan-Otto Attolini; David Rossell; Elena Sancho; Eduard Batlle
Recent molecular classifications of colorectal cancer (CRC) based on global gene expression profiles have defined subtypes displaying resistance to therapy and poor prognosis. Upon evaluation of these classification systems, we discovered that their predictive power arises from genes expressed by stromal cells rather than epithelial tumor cells. Bioinformatic and immunohistochemical analyses identify stromal markers that associate robustly with disease relapse across the various classifications. Functional studies indicate that cancer-associated fibroblasts (CAFs) increase the frequency of tumor-initiating cells, an effect that is dramatically enhanced by transforming growth factor (TGF)-β signaling. Likewise, we find that all poor-prognosis CRC subtypes share a gene program induced by TGF-β in tumor stromal cells. Using patient-derived tumor organoids and xenografts, we show that the use of TGF-β signaling inhibitors to block the cross-talk between cancer cells and the microenvironment halts disease progression.
Nature | 2016
Farin Hf; Ingrid Jordens; Mosa Mh; Onur Basak; Jeroen Korving; Daniele V. F. Tauriello; de Punder K; Stephane Angers; Peter J. Peters; Madelon M. Maurice; Hans Clevers
Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and ‘plasma membrane dilution’ through cell division shape the epithelial Wnt3 gradient.
Molecular Cell | 2010
Daniele V. F. Tauriello; Andrea Haegebarth; Ineke Kuper; Mariola J. Edelmann; Marre Henraat; Marijke R. Canninga-van Dijk; Benedikt M. Kessler; Hans Clevers; Madelon M. Maurice
The mechanism by which Wnt receptors transduce signals to activate downstream beta-catenin-mediated target gene transcription remains incompletely understood but involves Frizzled (Fz) receptor-mediated plasma membrane recruitment and activation of the cytoplasmic effector Dishevelled (Dvl). Here, we identify the deubiquitinating enzyme CYLD, the familial cylindromatosis tumor suppressor gene, as a negative regulator of proximal events in Wnt/beta-catenin signaling. Depletion of CYLD from cultured cells markedly enhances Wnt-induced accumulation of beta-catenin and target gene activation. Moreover, we demonstrate hyperactive Wnt signaling in human cylindroma skin tumors that arise from mutations in CYLD. At the molecular level, CYLD interacts with and regulates K63-linked ubiquitination of Dvl. Enhanced ubiquitination of the polymerization-prone DIX domain in CYLD-deficient cells positively links to the signaling activity of Dvl. Together, our results argue that loss of CYLD instigates tumor growth in human cylindromatosis through a mechanism in which hyperubiquitination of polymerized Dvl drives enhancement of Wnt responses.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Daniele V. F. Tauriello; Ingrid Jordens; Katharina Kirchner; Jerry W. Slootstra; Tom Kruitwagen; Britta A. M. Bouwman; Maria Noutsou; Stefan Rüdiger; Klaus Schwamborn; Alexandra Schambony; Madelon M. Maurice
Wnt binding to members of the seven-span transmembrane Frizzled (Fz) receptor family controls essential cell fate decisions and tissue polarity during development and in adulthood. The Fz-mediated membrane recruitment of the cytoplasmic effector Dishevelled (Dvl) is a critical step in Wnt/β-catenin signaling initiation, but how Fz and Dvl act together to drive downstream signaling events remains largely undefined. Here, we use an Fz peptide-based microarray to uncover a mechanistically important role of the bipartite Dvl DEP domain and C terminal region (DEP-C) in binding a three-segmented discontinuous motif in Fz. We show that cooperative use of two conserved motifs in the third intracellular loop and the classic C-terminal motif of Fz is required for DEP-C binding and Wnt-induced β-catenin activation in cultured cells and Xenopus embryos. Within the complex, the Dvl DEP domain mainly binds the Fz C-terminal tail, whereas a short region at the Dvl C-terminal end is required to bind the Fz third loop and stabilize the Fz-Dvl interaction. We conclude that Dvl DEP-C binding to Fz is a key event in Wnt-mediated signaling relay to β-catenin. The discontinuous nature of the Fz-Dvl interface may allow for precise regulation of the interaction in the control of Wnt-dependent cellular responses.
Seminars in Cancer Biology | 2014
Alexandre Calon; Daniele V. F. Tauriello; Eduard Batlle
TGF-beta signaling is one of the major pathways controlling cell and tissue behavior not only in homeostasis but also in disease. During tumorigenesis TGF-beta orchestrated processes are key due to its dual role as tumor suppressor and tumor promoter. Important functions of this pathway have been described in a context-dependent manner both in epithelial cancer cells and in the tumor microenvironment during tumor progression. Carcinoma-associated fibroblasts (CAFs) are one of the most abundant stromal cell types in virtually all solid tumors. CAFs favor malignant progression by providing cancer cells with proliferative, migratory, survival and invasive capacities. A complex network of signaling pathways underlying their tumor-promoting properties is beginning to take shape. In this review, we examine current evidence on the emerging mechanisms involving TGF-beta in CAF-mediated cancer progression, and discuss their potential as therapeutic targets.
Nature | 2018
Daniele V. F. Tauriello; Sergio Palomo-Ponce; Diana Stork; Antonio Berenguer-Llergo; Jordi Badia-Ramentol; Mar Iglesias; Marta Sevillano; Sales Ibiza; Adrià Cañellas; Xavier Hernando-Momblona; Daniel Byrom; Joan A. Matarin; Alexandre Calon; Elisa I. Rivas; Angel R. Nebreda; Antoni Riera; Camille Stephan-Otto Attolini; Eduard Batlle
Most patients with colorectal cancer die as a result of the disease spreading to other organs. However, no prevalent mutations have been associated with metastatic colorectal cancers. Instead, particular features of the tumour microenvironment, such as lack of T-cell infiltration, low type 1 T-helper cell (TH1) activity and reduced immune cytotoxicity or increased TGFβ levels predict adverse outcomes in patients with colorectal cancer. Here we analyse the interplay between genetic alterations and the tumour microenvironment by crossing mice bearing conditional alleles of four main colorectal cancer mutations in intestinal stem cells. Quadruple-mutant mice developed metastatic intestinal tumours that display key hallmarks of human microsatellite-stable colorectal cancers, including low mutational burden, T-cell exclusion and TGFβ-activated stroma. Inhibition of the PD-1–PD-L1 immune checkpoint provoked a limited response in this model system. By contrast, inhibition of TGFβ unleashed a potent and enduring cytotoxic T-cell response against tumour cells that prevented metastasis. In mice with progressive liver metastatic disease, blockade of TGFβ signalling rendered tumours susceptible to anti-PD-1–PD-L1 therapy. Our data show that increased TGFβ in the tumour microenvironment represents a primary mechanism of immune evasion that promotes T-cell exclusion and blocks acquisition of the TH1-effector phenotype. Immunotherapies directed against TGFβ signalling may therefore have broad applications in treating patients with advanced colorectal cancer.
Cell Cycle | 2010
Daniele V. F. Tauriello; Madelon M. Maurice
Wnt signaling mediates key developmental and homeostatic processes including stem cell maintenance, growth and cell fate specification, cell polarity and migration. Inappropriate activation of Wnt signaling is linked to a range of human disorders, most notably cancer and neurodegenerative diseases. In the Wnt/β-catenin cascade, signaling events converge on the regulation of ubiquitin-mediated degradation of the crucial transcriptional regulator β-catenin. The emerging mechanisms by which ubiquitin modification of proteins controls cellular pathways comprise both proteolytic and nonproteolytic functions. In nonproteolytic functions, ubiquitin acts as a signaling device in the control of protein activity, subcellular localization and complex formation. Here, we review and discuss recent developments that implicate ubiquitin-mediated mechanisms at multiple steps of Wnt pathway activation.
Journal of Cell Science | 2012
Micha Nethe; Bart-Jan de Kreuk; Daniele V. F. Tauriello; Eloise C. Anthony; Barbara Snoek; Thomas Stumpel; Patricia C. Salinas; Madelon M. Maurice; Dirk Geerts; André M. Deelder; Paul J. Hensbergen; Peter L. Hordijk
Summary The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell–cell junctions. Here we report that Rac1 associates with the ubiquitin–protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell–cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell–cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell–cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell–cell contacts.
Trends in cancer | 2016
Daniele V. F. Tauriello; Eduard Batlle
Colorectal cancer (CRC) diagnosis often occurs at late stages when tumor cells have already disseminated. Current therapies are poorly effective for metastatic disease, the main cause of death in CRC. Despite mounting evidence implicating the tumor microenvironment in CRC progression and metastasis, clinical practice remains predominantly focused on targeting the epithelial compartment. Because CRCs remain largely refractory to current therapies, we must devise alternative strategies. Transforming growth factor (TGF)-β has emerged as a key architect of the microenvironment in poor-prognosis cancers. Disseminated tumor cells show a strong dependency on a TGF-β-activated stroma during the establishment and subsequent expansion of metastasis. We review and discuss the development of integrated approaches focused on targeting the ecosystem of poor-prognosis CRCs.