Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madelon M. Maurice is active.

Publication


Featured researches published by Madelon M. Maurice.


Cell | 2012

Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex

Vivian Li; Ser Sue Ng; Paul J. Boersema; Teck Yew Low; Wouter R. Karthaus; Jan P. Gerlach; Shabaz Mohammed; Albert J. R. Heck; Madelon M. Maurice; Tokameh Mahmoudi; Hans Clevers

Degradation of cytosolic β-catenin by the APC/Axin1 destruction complex represents the key regulated step of the Wnt pathway. It is incompletely understood how the Axin1 complex exerts its Wnt-regulated function. Here, we examine the mechanism of Wnt signaling under endogenous levels of the Axin1 complex. Our results demonstrate that β-catenin is not only phosphorylated inside the Axin1 complex, but also ubiquinated and degraded via the proteasome, all within an intact Axin1 complex. In disagreement with current views, we find neither a disassembly of the complex nor an inhibition of phosphorylation of Axin1-bound β-catenin upon Wnt signaling. Similar observations are made in primary intestinal epithelium and in colorectal cancer cell lines carrying activating Wnt pathway mutations. Wnt signaling suppresses β-catenin ubiquitination normally occurring within the complex, leading to complex saturation by accumulated phospho-β-catenin. Subsequently, newly synthesized β-catenin can accumulate in a free cytosolic form and engage nuclear TCF transcription factors.


Nature | 2012

Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors

Bon-Kyoung Koo; Maureen Spit; Ingrid Jordens; Teck Yew Low; Daniel E. Stange; Marc van de Wetering; Johan H. van Es; Shabaz Mohammed; Albert J. R. Heck; Madelon M. Maurice; Hans Clevers

LGR5+ stem cells reside at crypt bottoms, intermingled with Paneth cells that provide Wnt, Notch and epidermal growth factor signals. Here we find that the related RNF43 and ZNRF3 transmembrane E3 ubiquitin ligases are uniquely expressed in LGR5+ stem cells. Simultaneous deletion of the two genes encoding these proteins in the intestinal epithelium of mice induces rapidly growing adenomas containing high numbers of Paneth and LGR5+ stem cells. In vitro, growth of organoids derived from these adenomas is arrested when Wnt secretion is inhibited, indicating a dependence of the adenoma stem cells on Wnt produced by adenoma Paneth cells. In the HEK293T human cancer cell line, expression of RNF43 blocks Wnt responses and targets surface-expressed frizzled receptors to lysosomes. In the RNF43-mutant colorectal cancer cell line HCT116, reconstitution of RNF43 expression removes its response to exogenous Wnt. We conclude that RNF43 and ZNRF3 reduce Wnt signals by selectively ubiquitinating frizzled receptors, thereby targeting these Wnt receptors for degradation.


Nature Cell Biology | 2006

FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP

Armando van der Horst; Alida M. M. de Vries-Smits; Arjan B. Brenkman; Miranda van Triest; Niels J. F. van den Broek; Frédéric Colland; Madelon M. Maurice; Boudewijn M.T. Burgering

FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.


Nature Immunology | 2002

How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease

Isao Matsumoto; Mariana Maccioni; David M. Lee; Madelon M. Maurice; Barry P. Simmons; Michael B. Brenner; Diane Mathis; Christophe Benoist

Arthritis in the K/BxN mouse model results from pathogenic immunoglobulins (Igs) that recognize the ubiquitous cytoplasmic enzyme glucose-6-phosphate isomerase (GPI). But how is a joint-specific disease of autoimmune and inflammatory nature induced by systemic self-reactivity? No unusual amounts or sequence, splice or modification variants of GPI expression were found in joints. Instead, immunohistological examination revealed the accumulation of extracellular GPI on the lining of the normal articular cavity, most visibly along the cartilage surface. In arthritic mice, these GPI deposits were amplified and localized with IgG and C3 complement. Similar deposits were found in human arthritic joints. We propose that GPI–anti-GPI complexes on articular surfaces initiate an inflammatory cascade via the alternative complement pathway, which is unbridled because the cartilage surface lacks the usual cellular inhibitors. This may constitute a generic scenario of arthritogenesis, in which extra-articular proteins coat the cartilage or joint extracellular matrix.


Nature Cell Biology | 2008

Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex

Xavier Franch-Marro; Franz Wendler; Sonia Guidato; Janice Griffith; Alberto Baena-Lopez; Nobue Itasaki; Madelon M. Maurice; Jean-Paul Vincent

The glycolipoproteins of the Wnt family raise interesting trafficking issues, especially with respect to spreading within tissues. Recently, the retromer complex has been suggested to participate in packaging Wnts into long-range transport vehicles. Our analysis of a Drosophila mutant in Vps35 show that, instead, the retromer complex is required for efficient progression of Wingless (a Drosophila Wnt) through the secretory pathway. Indeed expression of senseless, a short-range target gene, is lost in Vps35-deficient imaginal discs. In contrast, Vps35 is not required for Hedgehog secretion, suggesting specificity. Overexpression of Wntless, a transmembrane protein known to be specifically required for Wingless secretion overcomes the secretion block of Vps35-mutant cells. Furthermore, biochemical evidence confirms that Wntless engages with the retromer complex. We propose that Wntless accompanies Wingless to the plasma membrane where the two proteins dissociate. Following dissociation from Wingless, Wntless is internalized and returns to the Golgi apparatus in a retromer-dependent manner. Without the retromer-dependent recycling route, Wingless secretion is impaired and, as electron microscopy suggests, Wntless is diverted to a degradative compartment.


Nature | 2016

Visualization of a short-range Wnt gradient in the intestinal stem-cell niche

Farin Hf; Ingrid Jordens; Mosa Mh; Onur Basak; Jeroen Korving; Daniele V. F. Tauriello; de Punder K; Stephane Angers; Peter J. Peters; Madelon M. Maurice; Hans Clevers

Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and ‘plasma membrane dilution’ through cell division shape the epithelial Wnt3 gradient.


Molecular Cell | 2010

Loss of the Tumor Suppressor CYLD Enhances Wnt/β-Catenin Signaling through K63-Linked Ubiquitination of Dvl

Daniele V. F. Tauriello; Andrea Haegebarth; Ineke Kuper; Mariola J. Edelmann; Marre Henraat; Marijke R. Canninga-van Dijk; Benedikt M. Kessler; Hans Clevers; Madelon M. Maurice

The mechanism by which Wnt receptors transduce signals to activate downstream beta-catenin-mediated target gene transcription remains incompletely understood but involves Frizzled (Fz) receptor-mediated plasma membrane recruitment and activation of the cytoplasmic effector Dishevelled (Dvl). Here, we identify the deubiquitinating enzyme CYLD, the familial cylindromatosis tumor suppressor gene, as a negative regulator of proximal events in Wnt/beta-catenin signaling. Depletion of CYLD from cultured cells markedly enhances Wnt-induced accumulation of beta-catenin and target gene activation. Moreover, we demonstrate hyperactive Wnt signaling in human cylindroma skin tumors that arise from mutations in CYLD. At the molecular level, CYLD interacts with and regulates K63-linked ubiquitination of Dvl. Enhanced ubiquitination of the polymerization-prone DIX domain in CYLD-deficient cells positively links to the signaling activity of Dvl. Together, our results argue that loss of CYLD instigates tumor growth in human cylindromatosis through a mechanism in which hyperubiquitination of polymerized Dvl drives enhancement of Wnt responses.


Developmental Cell | 2009

Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex.

Jean Paul ten Klooster; Marnix Jansen; Jin Yuan; Viola Oorschot; Harry Begthel; Valeria Di Giacomo; Frédéric Colland; John de Koning; Madelon M. Maurice; Peter Hornbeck; Hans Clevers

The human Lkb1 kinase, encoded by the ortholog of the invertebrate Par4 polarity gene, is mutated in Peutz-Jeghers cancer syndrome. Lkb1 activity requires complex formation with the pseudokinase Strad and the adaptor protein Mo25. The complex can induce complete polarization in a single isolated intestinal epithelial cell. We describe an interaction between Mo25alpha and a human serine/threonine kinase termed Mst4. A homologous interaction occurs in the yeast Schizosaccharomyces pombe in the control of polar tip growth. Human Mst4 translocates from the Golgi to the subapical membrane compartment upon activation of Lkb1. Inhibition of Mst4 activity inhibits Lkb1-induced brush border formation, whereas other aspects of polarity such as the formation of lateral junctions remain unaffected. As an essential event in brush border formation, Mst4 phosphorylates the regulatory T567 residue of Ezrin. These data define a brush border induction pathway downstream of the Lkb1/Strad/Mo25 polarization complex, yet separate from other polarity events.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled

Daniele V. F. Tauriello; Ingrid Jordens; Katharina Kirchner; Jerry W. Slootstra; Tom Kruitwagen; Britta A. M. Bouwman; Maria Noutsou; Stefan Rüdiger; Klaus Schwamborn; Alexandra Schambony; Madelon M. Maurice

Wnt binding to members of the seven-span transmembrane Frizzled (Fz) receptor family controls essential cell fate decisions and tissue polarity during development and in adulthood. The Fz-mediated membrane recruitment of the cytoplasmic effector Dishevelled (Dvl) is a critical step in Wnt/β-catenin signaling initiation, but how Fz and Dvl act together to drive downstream signaling events remains largely undefined. Here, we use an Fz peptide-based microarray to uncover a mechanistically important role of the bipartite Dvl DEP domain and C terminal region (DEP-C) in binding a three-segmented discontinuous motif in Fz. We show that cooperative use of two conserved motifs in the third intracellular loop and the classic C-terminal motif of Fz is required for DEP-C binding and Wnt-induced β-catenin activation in cultured cells and Xenopus embryos. Within the complex, the Dvl DEP domain mainly binds the Fz C-terminal tail, whereas a short region at the Dvl C-terminal end is required to bind the Fz third loop and stabilize the Fz-Dvl interaction. We conclude that Dvl DEP-C binding to Fz is a key event in Wnt-mediated signaling relay to β-catenin. The discontinuous nature of the Fz-Dvl interface may allow for precise regulation of the interaction in the control of Wnt-dependent cellular responses.


Journal of Cell Science | 2008

In vivo role of lipid adducts on Wingless

Xavier Franch-Marro; Franz Wendler; Janice Griffith; Madelon M. Maurice; Jean-Paul Vincent

Two lipids (palmitate and palmitoleic acid) are appended onto Wnt proteins. It has been suggested that palmitate is required for signalling, whereas palmitoleic acid is necessary for progression through the secretory pathway. By mutating the relevant amino acids, we have investigated how these adducts contribute to the secretion and signalling activity of Wingless, the main Drosophila member of the Wnt family. Analysis of Wingless with a Cysteine 93 to Alanine mutation ([C93A]Wingless) shows that palmitoylation is essential for signalling activity in vivo (as well as in cultured cells). Moreover, without palmitate, Wingless fails to reach the surface of imaginal disc cells and, as electron microscopy (EM) analysis suggests, appears to accumulate in the endoplasmic reticulum (ER). Artificial targeting of palmitate-deficient Wingless to the plasma membrane does not rescue signalling activity. Therefore, palmitate at C93 has a dual role: in secretion and signalling. From our analysis of [S239A]Wingless, which lacks a conserved residue shown to be acylated in Wnt3a, we infer that palmitoleic acid is not, as previously suggested, absolutely required for secretion. Nevertheless, this mutant has poor signalling activity, suggesting that palmitoleic acid contributes significantly to signalling. We suggest that the overall level of lipidation affects signalling activity.

Collaboration


Dive into the Madelon M. Maurice's collaboration.

Top Co-Authors

Avatar

Hans Clevers

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidde L. Ploegh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge