Daniella M. Mizurini
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniella M. Mizurini.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2012
Nicolas Collin; Teresa C. F. Assumpção; Daniella M. Mizurini; Dana C. Gilmore; Angélica Dutra-Oliveira; Michalis Kotsyfakis; Anderson Sá-Nunes; Clarissa Teixeira; José M. C. Ribeiro; Robson Q. Monteiro; Jesus G. Valenzuela; Ivo M. B. Francischetti
Objective—Blood-sucking arthropods’ salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results—Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin’s primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion—Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.
FEBS Journal | 2010
Eric Calvo; Fuyuki Tokumasu; Daniella M. Mizurini; Peter McPhie; David L. Narum; José Marcos C. Ribeiro; Robson Q. Monteiro; Ivo M. B. Francischetti
Aegyptin is a 30 kDa mosquito salivary gland protein that binds to collagen and inhibits platelet aggregation. We have studied the biophysical properties of aegyptin and its mechanism of action. Light‐scattering plot showed that aegyptin has an elongated monomeric form, which explains the apparent molecular mass of 110 kDa estimated by gel‐filtration chromatography. Surface plasmon resonance identified the sequence RGQOGVMGF (where O is hydroxyproline) that mediates collagen interaction with von Willebrand factor (vWF) as a high‐affinity binding site for aegyptin, with a KD of approximately 5 nm. Additionally, aegyptin interacts with the linear peptide RGQPGVMGF and heat‐denatured collagen, indicating that the triple helix and hydroxyproline are not a prerequisite for binding. However, aegyptin does not interact with scrambled RGQPGVMGF peptide. Aegyptin also recognizes the peptides (GPO)10 and GFOGER with low affinity (μm range), which respectively represent glycoprotein VI and integrin α2β1 binding sites in collagen. Truncated forms of aegyptin were engineered, and the C‐terminus fragment was shown to interact with collagen and to attenuate platelet aggregation. In addition, aegyptin prevents laser‐induced carotid thrombus formation in the presence of Rose Bengal in vivo, without significant bleeding in rats. In conclusion, aegyptin interacts with distinct binding sites in collagen, and is useful tool to inhibit platelet–collagen interaction in vitro and in vivo.
Revista De Nutricao-brazilian Journal of Nutrition | 2007
Daniella Esteves Duque Guimarães; Fátima Lúcia de Carvalho Sardinha; Daniella M. Mizurini; Maria das Graças Tavares do Carmo
Leptin is a hormone secreted by adipocytes whose effect on the sympathetic nervous system and endocrine function confers active participation in the control of energy expenditure and appetite. Its identification added to the fat tissues in the human body the role of a multifunctional organ that produces and secretes a number of bioactive peptides and proteins, called adipocytokines. Changes in the amount of fat tissue, such as the ones that occur in obesity, affect the production of most of these factors secreted by adipocytes. Even if these changes are frequently associated with many metabolic disorders and increased risk for cardiovascular diseases, the role of fat tissue in the development of these complications, considered its endocrine function, continue to be investigated. The concentration of various adipocytokines increase in obesity and have been associated with hypertension (angiotensinogen), fibrinolysis impairment (plasminogen activator inhibitor-1) and insulin resistance (protein that stimulates acylation, tumor necrosis factor-alpha, interleukine-6 and resistin). On the other hand, leptin and adiponectin affect insulin sensitivity. In obesity, insulin resistance is also associated with leptin resistance and reduced plasma levels of adiponectin. Leptin and adiponectin still have complementary and distinct organic functions: adiponectin has potent antiatherogenic activity while leptin participates in the control of food intake. Some medications used to control diabetes increase adiponectin production in rodents and humans, suggesting that the development of new medications that target the adipocytokines can represent a new therapeutic alternative to prevent insulin resistance and atherosclerosis in obese individuals.
Journal of Biological Chemistry | 2011
Eric Calvo; Daniella M. Mizurini; Anderson Sá-Nunes; José M. C. Ribeiro; John F. Andersen; Ben J. Mans; Robson Q. Monteiro; Michail Kotsyfakis; Ivo M. B. Francischetti
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (KD ∼ 20 nm), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca2+) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.
Blood | 2013
Dongying Ma; Daniella M. Mizurini; Teresa C. F. Assumpção; Yuan Li; Yanwei Qi; Michail Kotsyfakis; José M. C. Ribeiro; Robson Q. Monteiro; Ivo M. B. Francischetti
The identity of vampire bat saliva anticoagulant remained elusive for almost a century. Sequencing the salivary gland genes from the vampire bat Desmodus rotundus identified Desmolaris as a novel 21.5-kDa naturally deleted (Kunitz 1-domainless) form of tissue factor pathway inhibitor. Recombinant Desmolaris was expressed in HEK293 cells and characterized as a slow, tight, and noncompetitive inhibitor of factor (F) XIa by a mechanism modulated by heparin. Desmolaris also inhibits FXa with lower affinity, independently of protein S. In addition, Desmolaris binds kallikrein and reduces bradykinin generation in plasma activated with kaolin. Truncated and mutated forms of Desmolaris determined that Arg32 in the Kunitz-1 domain is critical for protease inhibition. Moreover, Kunitz-2 and the carboxyl-terminus domains mediate interaction of Desmolaris with heparin and are required for optimal inhibition of FXIa and FXa. Notably, Desmolaris (100 μg/kg) inhibited FeCl3-induced carotid artery thrombus without impairing hemostasis. These results imply that FXIa is the primary in vivo target for Desmolaris at antithrombotic concentrations. Desmolaris also reduces the polyphosphate-induced increase in vascular permeability and collagen- and epinephrine-mediated thromboembolism in mice. Desmolaris emerges as a novel anticoagulant targeting FXIa under conditions in which the coagulation activation, particularly the contact pathway, plays a major pathological role.
Lipids | 2006
Ana Paula S. Silva; Daniella Esteves Duque Guimarães; Daniella M. Mizurini; Ingrid da Costa Maia; Susana Ortiz-Costa; Fátima Lúcia de Carvalho Sardinha; Maria das Graças Tavares do Carmo
The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources—partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)—were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th, day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.
Thrombosis and Haemostasis | 2010
Daniella M. Mizurini; Ivo M. B. Francischetti; John F. Andersen; Robson Q. Monteiro
Nitrophorin 2 (NP2) is a 20 kDa lipocalin identified in the salivary gland of the blood sucking insect, Rhodnius prolixus. It functions as a potent inhibitor of the intrinsic pathway of coagulation upon binding to factor IX (FIX) or FIXa. Herein we have investigated the in vivo antithrombotic properties of NP2. Surface plasmon resonance assays demonstrated that NP2 binds to rat FIX and FIXa with high affinities (KD = 43 and 47 nM, respectively), and prolongs the aPTT without affecting the PT. In order to evaluate NP2 antithrombotic effects in vivo two distinct models of thrombosis in rats were carried out. In the rose Bengal/laser induced injury model of arterial thrombosis, NP2 increased the carotid artery occlusion time by ≍35 and ≍155%, at doses of 8 and 80 μg/kg, respectively. NP2 also inhibited thrombus formation in an arterio-venous shunt model, showing ≍60% reduction at 400 μg/kg (i.v. administration). The antithrombotic effect lasted for up to 48 hours after a single i.v. dose. Notably, effective doses of NP2 did not increase the blood loss as evaluated by tail-transection model. In conclusion, NP2 is a potent and long-lasting inhibitor of arterial thrombosis with minor effects on haemostasis. It might be regarded as a potential agent for the treatment of human cardiovascular diseases.
Nucleic Acids Research | 2016
N. Dinuka Abeydeera; Martin Egli; Nehemiah Cox; Karen Mercier; Jonas Nascimento Conde; Pradeep S. Pallan; Daniella M. Mizurini; Malgorzata Sierant; Fatima Ezzahra Hibti; Tom Hassell; Tianzhi Wang; Feng Wu Liu; Carlos Martinez; Anil K. Sood; Terry P. Lybrand; Robson Q. Monteiro; Barbara Nawrot; Xianbin Yang
RNA aptamers are synthetic oligonucleotide-based affinity molecules that utilize unique three-dimensional structures for their affinity and specificity to a target such as a protein. They hold the promise of numerous advantages over biologically produced antibodies; however, the binding affinity and specificity of RNA aptamers are often insufficient for successful implementation in diagnostic assays or as therapeutic agents. Strong binding affinity is important to improve the downstream applications. We report here the use of the phosphorodithioate (PS2) substitution on a single nucleotide of RNA aptamers to dramatically improve target binding affinity by ∼1000-fold (from nanomolar to picomolar). An X-ray co-crystal structure of the α-thrombin:PS2-aptamer complex reveals a localized induced-fit rearrangement of the PS2-containing nucleotide which leads to enhanced target interaction. High-level quantum mechanical calculations for model systems that mimic the PS2 moiety and phenylalanine demonstrate that an edge-on interaction between sulfur and the aromatic ring is quite favorable, and also confirm that the sulfur analogs are much more polarizable than the corresponding phosphates. This favorable interaction involving the sulfur atom is likely even more significant in the full aptamer-protein complexes than in the model systems.
Scientific Reports | 2017
Ana C. Leal; Daniella M. Mizurini; Tainá Gomes; Natalia C. Rochael; Elvira M. Saraiva; Marcos S. Dias; Claudio C. Werneck; Micheli Severo Sielski; Cristina P. Vicente; Robson Q. Monteiro
Cancer patients are at an increased risk of developing thromboembolic complications. Several mechanisms have been proposed to explain cancer-associated thrombosis including the release of tumor-derived extracellular vesicles and the activation of host vascular cells. It was proposed that neutrophil extracellular traps (NETs) contribute to the prothrombotic phenotype in cancer. In this study, we evaluated the possible cooperation between tumor-derived exosomes and NETs in cancer-associated thrombosis. Female BALB/c mice were orthotopically injected with 4T1 breast cancer cells. The tumor-bearing animals exhibited increased levels of plasma DNA and myeloperoxidase in addition to significantly increased numbers of circulating neutrophils. Mice were subjected to either Rose Bengal/laser-induced venous thrombosis or ferric chloride-induced arterial thrombosis models. The tumor-bearing mice exhibited accelerated thrombus formation in both models compared to tumor-free animals. Treatment with recombinant human DNase 1 reversed the prothrombotic phenotype of tumor-bearing mice in both models. Remarkably, 4T1-derived exosomes induced NET formation in neutrophils from mice treated with granulocyte colony-stimulating factor (G-CSF). In addition, tumor-derived exosomes interacted with NETs under static conditions. Accordingly, the intravenous administration of 4T1-derived exosomes into G-CSF-treated mice significantly accelerated venous thrombosis in vivo. Taken together, our observations suggest that tumor-derived exosomes and neutrophils may act cooperatively in the establishment of cancer-associated thrombosis.
PLOS ONE | 2015
Willy Jablonka; Michalis Kotsyfakis; Daniella M. Mizurini; Robson Q. Monteiro; Jan Lukszo; Steven K. Drake; José M. C. Ribeiro; John F. Andersen
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic.