Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robson Q. Monteiro is active.

Publication


Featured researches published by Robson Q. Monteiro.


Cell | 2008

Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer

Simon N. Waddington; John H. McVey; David Bhella; Alan L. Parker; Kristeen Barker; Hideko Atoda; Rebecca Pink; Suzanne M. K. Buckley; Jenny A. Greig; Laura Denby; Jerome Custers; Takashi Morita; Ivo M. B. Francischetti; Robson Q. Monteiro; Dan H. Barouch; Nico van Rooijen; Claudio Napoli; Menzo Jans Emco Havenga; Stuart A. Nicklin; Andrew H. Baker

Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo.


Cancer Letters | 2009

Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner

Luize G. Lima; Roger Chammas; Robson Q. Monteiro; Maria Elisabete C. Moreira; Marcello A. Barcinski

Exposure of phosphatidylserine (PS) on cellular membranes and membrane-derived microvesicles stimulates a number of anti-inflammatory responses involved in malignant processes. Herein we show that B16F10 cells, a highly metastatic melanoma cell line, produce large quantities of PS-containing microvesicles in vitro. Tumor microvesicles increased TGF-beta(1) production by cultured macrophages and, in vivo, enhanced the metastatic potential of B16F10 cells in C57BL/6 mice, both effects being reversed by annexin V. Most strikingly, microvesicles induced melanoma metastasis in BALB/c mice, which are normally resistant to this tumor cell line. Altogether, this is the first demonstration that tumor-derived microvesicles favor the establishment of melanoma metastasis in a PS-dependent manner, possibly by down-regulating the hosts inflammatory and/or anti-tumoral immune responses.


Microcirculation | 2008

Blood Coagulation, Inflammation, and Malaria

Ivo M. B. Francischetti; Karl B. Seydel; Robson Q. Monteiro

Malaria remains a highly prevalent disease in more than 90 countries and accounts for at least 1 million deaths every year. Plasmodium falciparum infection is often associated with a procoagulant tonus characterized by thrombocytopenia and activation of the coagulation cascade and fibrinolytic system; however, bleeding and hemorrhage are uncommon events, suggesting that a compensated state of blood coagulation activation occurs in malaria. This article (i) reviews the literature related to blood coagulation and malaria in a historic perspective, (ii) describes basic mechanisms of coagulation, anticoagulation, and fibrinolysis, (iii) explains the laboratory changes in acute and compensated disseminated intravascular coagulation (DIC), (iv) discusses the implications of tissue factor (TF) expression in the endothelium of P. falciparum infected patients, and (v) emphasizes the procoagulant role of parasitized red blood cells (RBCs) and activated platelets in the pathogenesis of malaria. This article also presents the Tissue Factor Model (TFM) for malaria pathogenesis, which places TF as the interface between sequestration, endothelial cell (EC) activation, blood coagulation disorder, and inflammation often associated with the disease. The relevance of the coagulation‐inflammation cycle for the multiorgan dysfunction and coma is discussed in the context of malaria pathogenesis.


Journal of Thrombosis and Haemostasis | 2007

Plasmodium falciparum-infected erythrocytes induce Tissue Factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes

Ivo M. B. Francischetti; Karl B. Seydel; Robson Q. Monteiro; Richard O. Whitten; Cindy R. Erexson; Almerio Noronha; Graciela R. Ostera; Steve Kamiza; Malcolm E. Molyneux; Jerrold M. Ward; Terrie E. Taylor

Summary.  Background: Plasmodium falciparum malaria infects 300–500 million people every year, causing 1–2 million deaths annually. Evidence of a coagulation disorder, activation of endothelial cells (EC) and increase in inflammatory cytokines are often present in malaria. Objectives: We have asked whether interaction of parasitized red blood cells (pRBC) with EC induces tissue factor (TF) expression in vitro and in vivo. The role of phosphatidylserine‐containing pRBC to support the assembly of blood coagulation complexes was also investigated. Results: We demonstrate that mature forms of pRBC induce functional expression of TF by EC in vitro with productive assembly of the extrinsic Xnase complex and initiation of the coagulation cascade. Late‐stage pRBC also support the prothrombinase and intrinsic Xnase complex formation in vitro, and may function as activated platelets in the amplification phase of the blood coagulation. Notably, post‐mortem brain sections obtained from P. falciparum‐infected children who died from cerebral malaria and other causes display a consistent staining for TF in the EC. Conclusions: These findings place TF expression by endothelium and the amplification of the coagulation cascade by pRBC and/or activated platelets as potentially critical steps in the pathogenesis of malaria. Furthermore, it may allow investigators to test other therapeutic alternatives targeting TF or modulators of EC function in the treatment of malaria and/or its complications.


Bioscience Reports | 2013

Activation of blood coagulation in cancer: implications for tumour progression

Luize G. Lima; Robson Q. Monteiro

Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.


Thrombosis and Haemostasis | 2006

ANTITHROMBOTIC PROPERTIES OF IXOLARIS, A POTENT INHIBITOR OF THE EXTRINSIC PATHWAY OF THE COAGULATION CASCADE

Rômulo A. Nazareth; Luana S. Tomaz; Susana Ortiz-Costa; Georgia C. Atella; José M. C. Ribeiro; Ivo M. B. Francischetti; Robson Q. Monteiro

Ixolaris is a two-Kunitz tick salivary gland protein identified in Ixodes scapularis that presents extensive sequence homology to TFPI. It binds to FXa or FX as scaffolds and inhibits tissue factor/FVIIa complex (extrinsic Xnase). Differently from TFPI, ixolaris does not bind to the active site cleft of FXa. Instead, complex formation is mediated by the FXa heparin-binding exosite, which may also results in decreased FXa activity into the prothrombinase complex. In this report, we show that recombinant (125)I-ixolaris interacts with rat and human FX in plasma and prolongs the prothrombin time (PT) and activated partial thromboplastin time (aPTT) in vitro. We have also investigated the effects of ixolaris in vivo, using a venous thrombosis model. Subcutaneous (s.c.) or intravenous (i.v.) administration of ixolaris in rats caused a dose-dependent reduction in thrombus formation, with complete inhibition attained at 20 microg/kg and 10 microg/kg, respectively. Antithrombotic effects were observed 3 h after s.c. administration of ixolaris and lasted for 24 h thereafter. Ex vivo experiments showed that ixolaris (up to 100 microg/kg) did not affect the aPTT, while the PT was increased by approximately 0.4-fold at the highest ixolaris concentration. Remarkably, effective antithrombotic doses of ixolaris (20 microg/kg) was not associated with bleeding which was significant only at higher doses of the anticoagulant (40 microg/kg). Our experiments demonstrate that ixolaris is an effective and possibly safe antithrombotic agent in vivo.


Biochemical Journal | 2005

Ixolaris: a Factor Xa heparin-binding exosite inhibitor

Robson Q. Monteiro; Alireza R. Rezaie; José M. C. Ribeiro; Ivo M. B. Francischetti

Ixolaris is a two-Kunitz TFPI (tissue factor pathway inhibitor) from the tick salivary gland. In contrast with human TFPI, Ixolaris binds tightly to the zymogen FX (Factor X) and to dansyl-Glu-Gly-Arg-chloromethyl ketone-treated FXa (DEGR-FXa; active-site-blocked FXa), indicating that exosites are involved in the FX(a)-Ixolaris interaction. Here we provide evidence that Ixolaris binds specifically to the FXa HBE (heparin-binding exosite), since (i) it markedly decreases the inhibition of FXa by the antithrombin-heparin but not the antithrombin-pentasaccharide complex, (ii) it impairs FXa binding to Sepharose-immobilized heparin, and (iii) it allosterically modulates the catalytic activity of FXa for small chromogenic substrates (S-2765). By using a series of recombinant FXa mutants in which the HBE is mutated, we have identified the importance of amino acids involved in the enzyme-inhibitor interaction as being in the following order: Arg-93>>Arg-165> or =Lys-169>Lys-236>Lys-96>Arg-240>Arg-125. Ixolaris at appropriate concentrations also inhibits thrombin formation in vitro by the assembled prothrombinase complex, a process that is critically dependent on the FXa HBE. Ixolaris is the first inhibitor characterized to date that binds specifically to the FXa HBE.


Journal of Thrombosis and Haemostasis | 2009

Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model

Tatiana C. Carneiro-Lobo; Sandra König; Daniel Escorsim Machado; Luiz Eurico Nasciutti; Maria Fernanda Forni; Ivo M. B. Francischetti; Mari Cleide Sogayar; Robson Q. Monteiro

Summary.  Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87‐MG cells by flow‐cytometric and functional assays (extrinsic tenase). In addition, flow‐cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87‐MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF‐dependent procoagulant activity of the U87‐MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87‐MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti‐tumor therapy in humans.


Thrombosis and Haemostasis | 2008

Serpin-independent anticoagulant activity of a fucosylated chondroitin sulfate

Bianca F. Glauser; Mariana S. Pereira; Robson Q. Monteiro; Paulo A.S. Mourão

Fucosylated chondroitin sulfate is a glycosaminoglycan from sea cucumber composed of a chondroitin sulfate-like core with branches of sulfated fucose. This glycosaminoglycan has high anticoagulant and antithrombotic activities. Its serpin-dependent anticoagulant activity is mostly due to activating thrombin inhibition by heparin cofactor II. Here, we evaluated the anticoagulant activity of fucosylated chondroitin sulfate using antithrombin- and heparin cofactor II-free plasmas. In contrast to mammalian heparin, the invertebrate glycosaminoglycan is still able to prolong coagulation time and delay thrombin and factor Xa generation in serpin-free plasmas. These observations suggest that fucosylated chondroitin sulfate has a serpin-independent anticoagulant effect. We further investigated this effect using purified blood coagulation proteins. Clearly, fucosylated chondroitin sulfate inhibits the intrinsic tenase and prothrombinase complexes, which are critical for thrombin generation. It is possible that the invertebrate chondroitin sulfate inhibits interactions between cofactor Va and factor Xa. We also employed chemically modified polysaccharides in order to trace a structure versus activity relationship. Removal of the sulfated fucose branches, but not reduction of the glucuronic acid residues to glucose, abolished its activity. In conclusion, fucosylated chondroitin sulfate has broader effects on the coagulation system than mammalian glycosaminoglycans. In addition to its serpin-dependent inhibition of coagulation protease, it also inhibits the generation of factor Xa and thrombin by the tenase and prothrombinase complexes, respectively. In plasma systems, the serpin-independent anticoagulant effect of fucosylated chondroitin sulfate predominates over its serpin-dependent action. This glycosaminoglycan opens new avenues for the development of antithrombotic agents.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo

Nicolas Collin; Teresa C. F. Assumpção; Daniella M. Mizurini; Dana C. Gilmore; Angélica Dutra-Oliveira; Michalis Kotsyfakis; Anderson Sá-Nunes; Clarissa Teixeira; José M. C. Ribeiro; Robson Q. Monteiro; Jesus G. Valenzuela; Ivo M. B. Francischetti

Objective—Blood-sucking arthropods’ salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results—Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin’s primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion—Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.

Collaboration


Dive into the Robson Q. Monteiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russolina B. Zingali

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Daniella M. Mizurini

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Luize G. Lima

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mariane Assafim

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Vitor Hugo de Almeida

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

John F. Andersen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jorge A. Guimarães

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Tainá Gomes

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge