Daniëlle Horst
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniëlle Horst.
Journal of Experimental Medicine | 2007
Andrew D. Hislop; Maaike E. Ressing; Daphne van Leeuwen; Victoria Anne Pudney; Daniëlle Horst; Danijela Koppers-Lalic; Nathan P. Croft; Jacques Neefjes; Alan B. Rickinson; Emmanuel J. H. J. Wiertz
γ1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like α- and β-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349–360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829–6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related γ1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8+ T cell recognition through HLA-A–, HLA-B–, and HLA-C–restricting alleles when expressed in target cells in vitro. The small (60–amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci.
Seminars in Cancer Biology | 2008
Maaike E. Ressing; Daniëlle Horst; Bryan D. Griffin; Judy Tellam; Jianmin Zuo; Rajiv Khanna; Martin Rowe; Emmanuel J. H. J. Wiertz
Upon primary infection, EBV establishes a latent infection in B cells, characterized by maintenance of the viral genome in the absence of viral replication. The Epstein-Barr Nuclear Antigen 1 (EBNA1) plays a crucial role in maintenance of the viral DNA episome and is consistently expressed in all EBV-associated malignancies. Compared to other EBV latent gene products, EBNA1 is poorly recognized by CD8(+) T lymphocytes. Recent studies are discussed that shed new light on the mechanisms that underlie this unusual lack of CD8(+) T cell activation. Whereas the latent phase is characterized by the expression of a limited subset of viral gene products, the full repertoire of over 80 EBV lytic gene products is expressed during the replicative phase. Despite this abundance of potential T cell antigens, which indeed give rise to a strong response of CD4(+) and CD8(+) T lymphocytes, the virus can replicate successfully. Evidence is accumulating that this paradoxical situation is the result of actions of multiple viral gene products, inhibiting discrete stages of the MHC class I and class II antigen presentation pathways. Immediately after initiation of the lytic cycle, BNLF2a prevents peptide-loading of MHC class I molecules through inhibition of the Transporter associated with Antigen Processing, TAP. This will reduce presentation of viral antigens by the large ER-resident pool of MHC class I molecules. Synthesis of new MHC class I molecules is blocked by BGLF5. Viral-IL10 causes a reduction in mRNA levels of TAP1 and bli/LMP2, a subunit of the immunoproteasome. MHC class I molecules present at the cell surface are downregulated by BILF1. Also the antigen presenting capacity of MHC class II molecules is severely compromised by multiple EBV lytic gene products, including gp42/gH/gL, BGLF5, and vIL-10. In this review, we discuss how concerted actions of these EBV lytic proteins result in highly effective interference with CD8(+) and CD4(+) T cell surveillance, thereby providing the virus with a window for undisturbed generation of viral progeny.
PLOS Pathogens | 2009
Nathan P. Croft; Claire Shannon-Lowe; Andrew I. Bell; Daniëlle Horst; Elisabeth Kremmer; Maaike E. Ressing; Emmanuel J. H. J. Wiertz; Jaap M. Middeldorp; Martin Rowe; Alan B. Rickinson; Andrew D. Hislop
The gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle.
Journal of Immunology | 2009
Daniëlle Horst; Daphne van Leeuwen; Nathan P. Croft; Malgorzata A. Garstka; Andrew D. Hislop; Elisabeth Kremmer; Alan B. Rickinson; Emmanuel J. H. J. Wiertz; Maaike E. Ressing
EBV persists for life in the human host while facing vigorous antiviral responses that are induced upon primary infection. This persistence supports the idea that herpesviruses have acquired dedicated functions to avoid immune elimination. The recently identified EBV gene product BNLF2a blocks TAP. As a result, reduced amounts of peptides are transported by TAP from the cytoplasm into the endoplasmic reticulum (ER) lumen for binding to newly synthesized HLA class I molecules. Thus, BNLF2a perturbs detection by cytotoxic T cells. The 60-aa-long BNLF2a protein prevents the binding of both peptides and ATP to TAP, yet further mechanistic insight is, to date, lacking. In this study, we report that EBV BNLF2a represents a membrane-associated protein that colocalizes with its target TAP in subcellular compartments, primarily the ER. In cells devoid of TAP, expression levels of BNLF2a protein are greatly diminished, while ER localization of the remaining BNLF2a is retained. For interactions of BNLF2a with the HLA class I peptide-loading complex, the presence of TAP2 is essential, whereas tapasin is dispensible. Importantly, we now show that in B cells supporting EBV lytic replication, the BNLF2a protein is expressed early in infection, colocalizing and associating with the peptide-loading complex. These results imply that, during productive EBV infection, BNLF2a contributes to TAP inhibition and surface HLA class I down-regulation. In this way, EBV BNLF2a-mediated evasion from HLA class I-restricted T cell immunity contributes to creating a window for undetected virus production.
Cell Host & Microbe | 2009
Dina Alzhanova; David M. Edwards; Erika Hammarlund; Isabel Scholz; Daniëlle Horst; Mary J. Wagner; Chris Upton; Emmanuel J. H. J. Wiertz; Mark K. Slifka; Klaus Früh
Cowpox virus encodes an extensive array of putative immunomodulatory proteins, likely contributing to its wide host range, which includes zoonotic infections in humans. Unlike Vaccinia virus, cowpox virus prevents stimulation of CD8(+) T cells, a block that correlated with retention of MHC class I in the endoplasmic reticulum by the cowpox virus protein CPXV203. However, deletion of CPXV203 did not restore MHC class I transport or T cell stimulation. Here, we demonstrate the contribution of an additional viral protein, CPXV12, which interferes with MHC class I/peptide complex formation by inhibiting peptide translocation by the transporter associated with antigen processing (TAP). Importantly, human and mouse MHC class I transport and T cell stimulation was restored upon deletion of both CPXV12 and CPXV203, suggesting that these unrelated proteins independently mediate T cell evasion in multiple hosts. CPXV12 is a truncated version of a putative NK cell ligand, indicating that poxviral gene fragments can encode new, unexpected functions.
The Journal of Pathology | 2009
Dagmar Berghuis; Alfons S.K. de Hooge; Susy J. Santos; Daniëlle Horst; Emmanuel J. H. J. Wiertz; Marja C.J.A. van Eggermond; Peter J. van den Elsen; Antonie H. M. Taminiau; Laura Ottaviano; Karl-Ludwig Schaefer; Uta Dirksen; Erik Hooijberg; Arend Mulder; Cornelis J. M. Melief; R. Maarten Egeler; Marco W. Schilham; Ekaterina S. Jordanova; Pancras C.W. Hogendoorn; Arjan C. Lankester
Ewing sarcoma (EWS) is a tumour most commonly arising in bone, although on occasion in soft tissue, with a poor prognosis in patients with refractory or relapsed disease, despite multimodal therapy. Immunotherapeutic strategies based on tumour‐reactive T and/or natural killer cells may improve the treatment of advanced‐stage EWS. Since cellular immune recognition critically depends on human leukocyte antigen (HLA) expression, knowledge about HLA expression in EWS is crucial in the design of cellular immunotherapeutic strategies. Constitutive and IFNγ‐induced HLA class I expression was analysed in EWS cell lines (n = 6) by flow cytometry, using antibodies against both monomorphic and allele‐specific antigens. Expression of antigen processing pathway components and beta‐2 microglobulin (β2m) was assessed by western blot. Expression of class II transactivator (CIITA), and its contribution to HLA class II expression, was evaluated by qRT‐PCR, transduction assays, and flow cytometry. β2m/HLA class I and class II expression was validated in EWS tumours (n = 67) by immunofluorescence. Complete or partial absence of HLA class I expression was observed in 79% of EWS tumours. Lung metastases consistently lacked HLA class I and sequential tumours demonstrated a tendency towards decreased expression upon disease progression. Together with absent or low constitutive expression levels of specific HLA class I loci and alleles, and differential induction of identical alleles by IFNγ in different cell lines, these results may reflect the existence of an immune escape mechanism. Inducible expression of TAP‐1/‐2, tapasin, LMP‐2/‐7, and the β2m/HLA class I complex by IFNγ suggests that regulatory mechanisms are mainly responsible for heterogeneity in constitutive class I expression. EWSs lack IFNγ‐inducible HLA class II, due to lack of functional CIITA. The majority of EWS tumours, particularly if advanced‐stage, exhibit complete or partial absence of both classes of HLA. This knowledge will be instrumental in the design of cellular immunotherapeutic strategies for advanced‐stage EWS. Copyright
Journal of Immunology | 2011
Daniëlle Horst; Vincenzo Favaloro; Fabio Vilardi; Hans C. van Leeuwen; Malgorzata A. Garstka; Andrew D. Hislop; Catherine Rabu; Elisabeth Kremmer; Alan B. Rickinson; Stephen High; Bernhard Dobberstein; Maaike E. Ressing; Emmanuel J. H. J. Wiertz
EBV, the prototypic human γ1-herpesvirus, persists for life in infected individuals, despite the presence of vigorous antiviral immunity. CTLs play an important role in the protection against viral infections, which they detect through recognition of virus-encoded peptides presented in the context of HLA class I molecules at the cell surface. The viral peptides are generated in the cytosol and are transported into the endoplasmic reticulum (ER) by TAP. The EBV-encoded lytic-phase protein BNLF2a acts as a powerful inhibitor of TAP. Consequently, loading of antigenic peptides onto HLA class I molecules is hampered, and recognition of BNLF2a-expressing cells by cytotoxic T cells is avoided. In this study, we characterize BNLF2a as a tail-anchored (TA) protein and elucidate its mode of action. Its hydrophilic N-terminal domain is located in the cytosol, whereas its hydrophobic C-terminal domain is inserted into membranes posttranslationally. TAP has no role in membrane insertion of BNLF2a. Instead, Asna1 (also named TRC40), a cellular protein involved in posttranslational membrane insertion of TA proteins, is responsible for integration of BNLF2a into the ER membrane. Asna1 is thereby required for efficient BNLF2a-mediated HLA class I downregulation. To optimally accomplish immune evasion, BNLF2a is composed of two specialized domains: its C-terminal tail anchor ensures membrane integration and ER retention, whereas its cytosolic N terminus accomplishes inhibition of TAP function. These results illustrate how EBV exploits a cellular pathway for TA protein biogenesis to achieve immune evasion, and they highlight the exquisite adaptation of this virus to its host.
PLOS Pathogens | 2015
Marieke C. Verweij; Daniëlle Horst; Bryan D. Griffin; Rutger D. Luteijn; Andrew J. Davison; Maaike E. Ressing; Emmanuel J. H. J. Wiertz
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.
Immunology and Cell Biology | 2011
Daniëlle Horst; Maaike E. Ressing; Emmanuel J. H. J. Wiertz
Herpesviruses stand out for their capacity to establish lifelong infections of immunocompetent hosts, generally without causing overt symptoms. Herpesviruses are equipped with sophisticated immune evasion strategies, allowing these viruses to persist for life despite the presence of a strong antiviral immune response. Although viral evasion tactics appear to target virtually any stage of the innate and adaptive host immune response, detailed knowledge is now available on the molecular mechanisms underlying herpesvirus obstruction of MHC class I‐restricted antigen presentation to T cells. This opens the way for clinical application. Here, we review and discuss recent efforts to exploit human herpesvirus MHC class I evasion strategies for the rational design of novel strategies for vaccine development, cancer treatment, transplant protection and gene therapy.
Journal of Immunology | 2014
Rutger D. Luteijn; Hanneke Hoelen; Elisabeth Kruse; Wouter F. van Leeuwen; Jennine Grootens; Daniëlle Horst; Martijn C. Koorengevel; Jan W. Drijfhout; Elisabeth Kremmer; Klaus Früh; Jacques Neefjes; Antoinette Killian; Robert Jan Lebbink; Maaike E. Ressing; Emmanuel J. H. J. Wiertz
CD8+ CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.