Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel J. H. J. Wiertz is active.

Publication


Featured researches published by Emmanuel J. H. J. Wiertz.


Cell | 1996

The human cytomegalovirus US11 gene product dislocates MHC Class I heavy chains from the endoplasmic reticulum to the cytosol

Emmanuel J. H. J. Wiertz; Thomas R. Jones; Lei Sun; Matthew Bogyo; Hans J. Geuze; Hidde L. Ploegh

Human cytomegalovirus (HCMV) down-regulates expression of MHC class I products by selective proteolysis. A single HCMV gene, US11, which encodes an endoplasmic reticulum (ER) resident type-I transmembrane glycoprotein, is sufficient to cause this effect. In US11+cells, MHC class I molecules are core-glycosylated and therefore inserted into the ER. They are degraded with a half-time of less than 1 min. A full length breakdown intermediate that has lost the single N-linked glycan in an N-glycanase-catalyzed reaction transiently accumulates in cells exposed to the protease inhibitors LLnL, Cbz-LLL, and lactacystin, identifying the proteasome as a key protease. Subcellular fractionation experiments show this intermediate to be cytosolic. Thus, US11 dislocates newly synthesized class I molecules from the ER to the cytosol, where they are acted upon by an N-glycanase and the proteasome.


Immunity | 1997

The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP.

Kwangseog Ahn; Albrecht Gruhler; Begoña Galocha; Thomas R. Jones; Emmanuel J. H. J. Wiertz; Hidde L. Ploegh; Per A. Peterson; Young Yang; Klaus Früh

Human cytomegalovirus (HCMV) inhibits MHC class I antigen presentation by a sequential multistep process involving a family of unique short (US) region-encoded glycoproteins. US3 retains class I molecules, whereas US2 and US11 mediate the cytosolic degradation of heavy chains by the proteosomes. In US6-transfected cells, however, intracellular transport of class I molecules is impaired because of defective peptide translocation by transporters associated with antigen processing (TAP). Peptide transport is restored in HCMV mutants lacking US6. In contrast to the cytosolic herpes simplex virus protein ICP47, US6 interacts with TAP inside the endoplasmic reticulum lumen, as shown by US6 derivatives lacking the transmembrane and cytoplasmic domains and by the observation that US6 does not prevent peptides from binding to TAP. Thus, HCMV targets TAP for immune escape by a molecular mechanism different from that of herpes simplex virus.


Journal of Cell Biology | 2007

Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3

Xiaoli Wang; Roger A. Herr; Wei Jen Chua; Lonnie Lybarger; Emmanuel J. H. J. Wiertz; Ted H. Hansen

The mechanism by which substrates for endoplasmic reticulum–associated degradation are retrotranslocated to the cytosol remains largely unknown, although ubiquitination is known to play a key role. The mouse γ-herpesvirus protein mK3 is a viral RING-CH–type E3 ligase that specifically targets nascent major histocompatibility complex I heavy chain (HC) for degradation, thus blocking the immune detection of virus-infected cells. To address the question of how HC is retrotranslocated and what role mK3 ligase plays in this action, we investigated ubiquitin conjugation sites on HC using mutagenesis and biochemistry approaches. In total, our data demonstrate that mK3-mediated ubiquitination can occur via serine, threonine, or lysine residues on the HC tail, each of which is sufficient to induce the rapid degradation of HC. Given that mK3 has numerous cellular and viral homologues, it will be of considerable interest to determine the pervasiveness of this novel mechanism of ubiquitination.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion

Martin Rowe; Britt A. Glaunsinger; Daphne van Leeuwen; Jianmin Zuo; David Sweetman; Don Ganem; Jaap M. Middeldorp; Emmanuel J. H. J. Wiertz; Maaike E. Ressing

Relatively little is known about immune evasion during the productive phase of infection by the γ1-herpesvirus Epstein–Barr virus (EBV). The use of a unique system to isolate cells in lytic cycle allowed us to identify a host shutoff function operating in productively EBV-infected B cells. This impairment of protein synthesis results from mRNA degradation induced upon expression of the early lytic-cycle gene product BGLF5. Recently, a γ2-herpesvirus, Kaposi sarcoma herpesvirus, has also been shown to encode a host shutoff function, indicating that host shutoff appears to be a general feature of γ-herpesviruses. One of the consequences of host shutoff is a block in the synthesis of HLA class I and II molecules, reflected by reduced levels of these antigen-presenting complexes at the surface of cells in EBV lytic cycle. This effect could lead to escape from T cell recognition and elimination of EBV-producing cells, thereby allowing generation of viral progeny in the face of memory T cell responses.


Journal of Experimental Medicine | 2007

A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates

Andrew D. Hislop; Maaike E. Ressing; Daphne van Leeuwen; Victoria Anne Pudney; Daniëlle Horst; Danijela Koppers-Lalic; Nathan P. Croft; Jacques Neefjes; Alan B. Rickinson; Emmanuel J. H. J. Wiertz

γ1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like α- and β-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349–360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829–6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related γ1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8+ T cell recognition through HLA-A–, HLA-B–, and HLA-C–restricting alleles when expressed in target cells in vitro. The small (60–amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci.


Biochemical Journal | 2005

TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum

Gerco C. Hassink; Marjolein Kikkert; Sjaak van Voorden; Shiow Ju Lee; Robbert Spaapen; Theo Van Laar; Catherine S. Coleman; Eric Bartee; Klaus Früh; Vincent Chau; Emmanuel J. H. J. Wiertz

In the present study, the human TEB4 is identified as a novel ER (endoplasmic reticulum)-resident ubiquitin ligase. TEB4 has homologues in many species and has a number of remarkable properties. TEB4 contains a conserved RING (really interesting new gene) finger and 13 predicted transmembrane domains. The RING finger of TEB4 and its homologues is situated at the N-terminus and has the unconventional C4HC3 configuration. The N-terminus of TEB4 is located in the cytosol. We show that the isolated TEB4 RING domain catalyses ubiquitin ligation in vitro in a reaction that is ubiquitin Lys48-specific and involves UBC7 (ubiquitin-conjugating enzyme 7). These properties are reminiscent of E3 enzymes, which are involved in ER-associated protein degradation. TEB4 is an ER degradation substrate itself, promoting its own degradation in a RING finger- and proteasome-dependent manner.


PLOS Pathogens | 2009

The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

Jianmin Zuo; Andrew Currin; Bryan D. Griffin; Claire Shannon-Lowe; Wendy A. Thomas; Maaike E. Ressing; Emmanuel J. H. J. Wiertz; Martin Rowe

Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 γ1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV γ2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed.


Seminars in Cancer Biology | 2008

Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products.

Maaike E. Ressing; Daniëlle Horst; Bryan D. Griffin; Judy Tellam; Jianmin Zuo; Rajiv Khanna; Martin Rowe; Emmanuel J. H. J. Wiertz

Upon primary infection, EBV establishes a latent infection in B cells, characterized by maintenance of the viral genome in the absence of viral replication. The Epstein-Barr Nuclear Antigen 1 (EBNA1) plays a crucial role in maintenance of the viral DNA episome and is consistently expressed in all EBV-associated malignancies. Compared to other EBV latent gene products, EBNA1 is poorly recognized by CD8(+) T lymphocytes. Recent studies are discussed that shed new light on the mechanisms that underlie this unusual lack of CD8(+) T cell activation. Whereas the latent phase is characterized by the expression of a limited subset of viral gene products, the full repertoire of over 80 EBV lytic gene products is expressed during the replicative phase. Despite this abundance of potential T cell antigens, which indeed give rise to a strong response of CD4(+) and CD8(+) T lymphocytes, the virus can replicate successfully. Evidence is accumulating that this paradoxical situation is the result of actions of multiple viral gene products, inhibiting discrete stages of the MHC class I and class II antigen presentation pathways. Immediately after initiation of the lytic cycle, BNLF2a prevents peptide-loading of MHC class I molecules through inhibition of the Transporter associated with Antigen Processing, TAP. This will reduce presentation of viral antigens by the large ER-resident pool of MHC class I molecules. Synthesis of new MHC class I molecules is blocked by BGLF5. Viral-IL10 causes a reduction in mRNA levels of TAP1 and bli/LMP2, a subunit of the immunoproteasome. MHC class I molecules present at the cell surface are downregulated by BILF1. Also the antigen presenting capacity of MHC class II molecules is severely compromised by multiple EBV lytic gene products, including gp42/gH/gL, BGLF5, and vIL-10. In this review, we discuss how concerted actions of these EBV lytic proteins result in highly effective interference with CD8(+) and CD4(+) T cell surveillance, thereby providing the virus with a window for undisturbed generation of viral progeny.


Journal of Virology | 2008

The DNase of Gammaherpesviruses Impairs Recognition by Virus-Specific CD8+ T Cells through an Additional Host Shutoff Function

Jianmin Zuo; Wendy A. Thomas; Daphne van Leeuwen; Jaap M. Middeldorp; Emmanuel J. H. J. Wiertz; Maaike E. Ressing; Martin Rowe

ABSTRACT The DNase/alkaline exonuclease (AE) genes are well conserved in all herpesvirus families, but recent studies have shown that the AE proteins of gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposis sarcoma-associated herpesvirus (KSHV) exhibit an additional function which shuts down host protein synthesis. One correlate of this additional shutoff function is that levels of cell surface HLA molecules are downregulated, raising the possibility that shutoff/AE genes of gammaherpesviruses might contribute to viral immune evasion. In this study, we show that both BGLF5 (EBV) and SOX (KSHV) shutoff/AE proteins do indeed impair the ability of virus-specific CD8+ T-cell clones to recognize endogenous antigen via HLA class I. Random mutagenesis of the BGLF5 gene enabled us to genetically separate the shutoff and AE functions and to demonstrate that the shutoff function was the critical factor determining whether BGLF5 mutants can impair T-cell recognition. These data provide further evidence that EBV has multiple mechanisms to modulate HLA class I-restricted T-cell responses, thus enabling the virus to replicate and persist in the immune-competent host.


Immunology Letters | 1997

Cytomegaloviruses use multiple mechanisms to elude the host immune response.

Emmanuel J. H. J. Wiertz; Ann B. Hill; Dominic Tortorella; Hidde L. Ploegh

The study of the effects of cytomegaloviruses on the MHC class I-restricted antigen presentation pathway has yielded an embarrassment of riches. The human cytomegalovirus (HCMV) encodes at least five to six different glycoproteins, each interfering in a different way with elimination of the virus by the host immune system. Most likely, it is the concerted action of these glycoproteins that allows HCMV to escape from elimination by the host immune system during acute and perhaps also persistent infection. Prime targets of these CMV glycoproteins are MHC class I glycoproteins: the very molecules that signal the presence of a virally infected cell to the immune system. Recently, several novel links in the multi-step process of immune evasion by HCMV have been discovered.

Collaboration


Dive into the Emmanuel J. H. J. Wiertz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danijela Koppers-Lalic

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marieke C. Verweij

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob C. Hoeben

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge